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Abstract

The paper characterizes the Shannon (1948) and Tsallis (1988) en-
tropies in a standard framework of decision theory, mixture sets.
Procedural mixture sets are introduced as a variant of mixture sets
in which it is not necessarily true that a mixture of two identical
elements yields the same element. This allows the process of mixing
itself to have an intrinsic value. The paper proves the surprising
result that simply imposing the standard axioms of von Neumann-
Morgenstern on preferences on a procedural mixture set yields the
entropy as a representation of procedural value. An application to the
relation between choice probabilities and decision times in decision
processes elucidates the difficulty of extending the drift-diffusion
model to multi-alternative choice.
Keywords: Decision theory, procedural value, decision processes,
mixture sets, entropy, reduction of compound mixtures, reducibility,
associativity

1 Introduction

Information theoretic measures are commonly employed in economic
theory. They are used to study inequality (Shorrocks, 1980; Theil, 1967),
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segregation (Frankel & Volij, 2011), the utility of gambling (Luce et al.,
2008a, 2008b), diversity (Nehring & Puppe, 2009), consumer demand (Theil,
1965), freedom of choice (Suppes, 1996), market concentration (Hennessy
& Lapan, 2007; Herfindahl, 1950; Hirschman, 1980), and information costs
(Caplin et al., 2017; Sims, 2003). The present paper provides an axiomatic
foundation of two of the most commonly employed information measures,
the Shannon (1948) and Tsallis (1988) entropies (the latter of which is a
monotone transformation of the Rényi (1961) entropy). We show that these
measures arise naturally from the standard von Neumann-Morgenstern
axioms imposed on a variation of mixture sets that allows for procedural
aspects to play a role.

The expected utility representation by von Neumann and Morgenstern
(1944) was initially stated using an “algebra of combining” of compound
lotteries. Herstein and Milnor (1953) simplified the axioms greatly by
introducing “mixture sets”. Mixture sets can be given the interpretation of
nested binary lotteries; we play one lottery to determine which lottery is
resolved next, which determines which lottery is resolved afterwards, and
so on. From the Reduction of Compound Mixtures axiom of mixture sets
and the von Neumann and Morgenstern (1944) axioms follows interiority;
if a ≿ b, then a ≿ µa ⊕ (1 − µ)b ≿ b.

One example where interiority is violated is when modeling the time
it takes an individual to make decisions in the context of stochastic choice
. The literature on decision processes (Bogacz et al., 2006; Usher et al.,
2013) studies how long it takes a decision maker to choose from a set of
alternatives and how this duration depends on properties of the decision
problem such as the probabilities of alternatives being chosen. Suppose
a and b are decision processes and a ∼ b denotes that these decision
processes take an equal amount of time to complete. In this context
the relation ≿ has the interpretation of “takes as least as long as” and
represents a procedural value (time) as opposed to a consequentialist value
(utility). Suppose µa ⊕ (1 − µ)b is a decision process in which a decision
maker chooses with probability µ to complete the sub-decision process a
and complete the sub-decision process b with probability 1− µ. If choice is
not instantaneous, then it is reasonable to assume that µa⊕ (1− µ)b ≻ a ∼
b, i.e., that the decision to choose between the two sub-decision processes
takes some additional time to complete.

This paper provides two ways in which the mixture set assumptions
of Herstein and Milnor (1953) and the expected utility axioms of von
Neumann and Morgenstern (1944) can be adjusted to relax interiority. In
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the first main result we change the Reduction of Compound Mixtures
axiom of mixture sets into an Associativity condition. Associativity is
a new axiom that is not a generalization of the aforemention Reduction
of Compound Mixtures. Associativity states that the order of mixing
does not matter but unlike Reduction of Compound Mixtures allows for
µa ⊕ (1 − µ)a ̸∼ a. We call sets that fulfill these assumptions procedural
mixture sets. The expected utility axioms — Weak Order, Continuity,
and Independence — of von Neumann and Morgenstern (1944) then
characterize the Shannon and Tsallis entropies.

In the second main result we restrict the Independence axiom of von
Neumann and Morgenstern (1944) to mixtures with disjoint support but
maintain the mixture set assumptions introduced by Herstein and Milnor
(1953). We again obtain the Shannon and Tsallis entropy representation
(for a subset of the relation). In both cases, the entropy can be interpreted
as a function representing the procedural value of going through the
motions of resolving a mixture. We call such a representation a mixture
entropy value.

We apply this model of procedural value to decision times in stochastic
decision processes. We show that decision processes that follow the
Luce (1959) model of stochastic choice form a procedural mixture set.
In particular, Luce (1959)’s IIA axiom of choice probabilities guarantees
Associativity while the fact that choice is non-instantaneous motivates the
violation of interiority.1 In this context, the Independence axiom means
that the time it takes to complete a decision process is increasing in the
duration of each sub-decision process. The mixture entropy value then
emerges as a representation of decision times for multi-alternative choice.
This results in a corollary that jointly characterizes the Luce model of
stochastic choice and an entropy representation of decision times.

The Luce model of stochastic choice is restrictive. In some cases, the
associative structure generated by the Luce model only holds for a subset
of the decisions. Using our second main characterization result (which
weakens the Independence axiom instead of changing the mixture set
assumptions), we obtain a model of decision times and choice probabilities
for which the Luce stochastic choice model and the mixture entropy
decision time representation hold whenever the alternatives have mutually
exclusive choice relevant attributes. The weakening of the Independence

1In the context of decisions under risk, uncertainty effects may induce violations of
interiority (Gneezy et al., 2006). This suggests that individuals also attach a “procedural”
value to the uncertainty of lotteries.
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axiom requires decision times to only increase in the decision times of
sub-decision processes that contain alternatives sufficiently distinct from
the remaining alternatives of the decision process. This allows the decision
time between two similar alternatives to differ from the decision time
between two very different alternatives.

The paper proceeds as follows. We present the axioms and the repre-
sentation theorem for procedural mixtures in Section 3. Section 4 provides
comparative statics results and interprets the parameters of the model.
Section 5 discusses the representation results that maintain Reducibility
but weaken Independence. The relation to the literature is given in Section
6. Section 7 concludes.

2 Introductory Example

Suppose an analyst observes a sample of decision makers choosing be-
tween items a and b. This choice is not instantaneous; the decision maker
undergoes some thought process until a decision is made. The duration of
this thought process will generally depend on how difficult the decision is.
The literature on decision processes (Bogacz et al., 2006; Usher et al., 2013)
has established that the more uncertain ex ante the choice between two
alternatives is, the longer a decision takes. Thus, when two alternatives
are equally likely to be chosen, then the decision process takes longer than
when one alternative is much more likely to be chosen than the other.2

The drift diffusion model (Ratcliff, 1978) captures this basic empirical fact
but there is no agreed-upon generalization to multiple options (Ratcliff
et al., 2016). The generalization to multiple options is complicated by the
presence of similarity, attraction, and compromise effects (Roe et al., 2001)
in stochastic choice. Generally, the availability of additional alternatives
may influence the relative choice probabilities of two alternatives, com-
plicating the extension of the relation between choice probabilities and
decision times from two options to multiple options. However, we will
show that even in the absence of such effects, it turns out that plausible
assumptions lead to a very restrictive functional form for the relation
between probabilities and decision times.

Take the classical example of a decision maker who faces a choice
between taking an airplane , a bus, or a car to travel to another city. An

2In experiments, the decision time commonly refers to the average decision time of a
sample of subjects and the choice probabilities refer to the relative frequency of choice.
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analyst records the choice probabilities and decision times shown in Figure
1.

Option 1 Option 2 Option 3 Duration

Airplane Bus Car
1.9s

20% 20% 60%
Airplane Bus None

1.5s
50% 50%
Bus Bus None

1.5s
50% 50%

Airplane Car None
1.3s

25% 75%
Bus Car None

1.3s
25% 75%

Airplane None None
.5s

100%
Bus None None

.5s
100%
Car None None

.5s
100%

Figure 1: Choice Probability and Decision Time Data

The choices from singleton sets are trivial and always have a probability
of 100%. They are also resolved the most quickly. The binary choice data
exhibits the following pattern: the airplane and bus are equally likely to
be chosen when compared with each other and both have the same choice
probability and decision time when compared with the car. This property
is an instance of the Independence of Irrelevant Alternatives (IIA) axiom
of Luce (1959). Consistently, the probabilities of the three option decision
problem in Figure 1 are such that conditioning on any subset yields the
corresponding two option choice probabilities. The choice probability data
therefore follows the Luce (1959) model.

We also observe that the (meaningless) decision between two buses
takes as much time as the decision between an airplane and a bus. This
is a particularly strong violation of Reducibility; even the choice between
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two identical options has a positive deliberation time. This is consistent
with the blue bus - red bus paradox of Debreu (1960) according to which
the introduction of (meaningless) distinctions can influence the relative
choice probability to other alternatives.3

We now present a deliberation process that the decision maker might
go through in order to make a decision between the three alternatives
airplane, bus, and car. We assume that the decision maker goes through
a sequence of binary decisions about attributes of goods. An attribute is
a shared property of some of the goods and thus by iteratively choosing
attributes, the decision maker narrows down the options sequentially
until arriving at a final option. In the case of three alternatives, there are
only three possible configurations for such a decision process, depicted in
Figure 2. For example, the decision maker might initially decide to use
a slow method of transportation and then solve the subsequent decision
problem of choosing between the bus and the car.

Airplane

Bus Car

slow

Airplane Bus

public

Car

Airplane Car

expensive

Bus

Figure 2: Choice Process with Attributes

The literature on decision processes poses that average decision times
depend on the relative choice probabilities and parameters related to the
difficulty of the decision problem. Consistent with the spirit of the decision
process literature, we assume in the first step that the attributes do not
influence the decision process beyond the probabilities of the alternatives
being chosen. We can then reduce the data structure to Figure 3.

Given our data in Figure 1, we do not observe which of the choice
processes in Figure 3 the decision maker follows. The data in Figure 1

only contain a single entry for the decision time with the given choice
probabilities of the three alternatives. Thus, from the perspective of the
analyst, all of the three configurations are observationally equivalent. This

3In Section 5 we formally introduce attributes of alternatives which allow the decision
duration of the choice between two buses to differ from the choice duration between an
airplane and a bus.
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Airplane

1
5

Bus

1
4

Car

3
4

4
5

Airplane

1
2

Bus

1
2

2
5

Car

3
5

Airplane

1
4

Car

3
4

4
5

Bus

1
5

Figure 3: Choice Process with Probabilities

motivates a property we call Associativity. Associativity means that the
three processes in Figure 3 are either indistinguishable for the analyst or
actually yield identical decision times. Intuitively, Associativity effectively
means that we can reduce the three choice processes of Figure 3 to what is
shown in Figure 4.

Airplane

1
5

Bus

1
5

Car

3
5

Figure 4: Decision Process without Branches

Finally, in decision processes (at least in their most idealized form) the
exact choices (such as airplane, bus, or car) are irrelevant and decision
times only depend on the choice probabilities. Thus, we can reduce the
decision process further to Figure 5.

∅

1
5

∅

1
5

∅

3
5

Figure 5: Decision Process without Alternative Details

Suppose now for all decision processes of the form shown in Figure
5 the analyst has gathered a decision time. That is, for any number of
options and relative choice probabilities, a decision time has been recorded.
We now assume that the decision time of a choice process is increasing in
the decision time of any sub-decision process. Going back to Figure 3, we
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can identify the relevant sub-decision processes as the remaining decision
once any subset of alternatives has been eliminated in the decision process.
It turns out that this assumption (together with Continuity) allows us to
characterize a sharp functional form for the average decision time; the
Tsallis and Shannon entropies of the choice probabilities given in Figure 1.

To do so, the next section formally introduces a data structure, proce-
dural mixture sets, and a representation theorem both of which have use
outside of this particular example.

3 Procedural Mixtures

For ease of comparison, we first recapitulate the axioms of Herstein and
Milnor (1953) which for a mixture set M are given as follows:

µa ⊕ (1 − µ)b ∈ M (1)
1a ⊕ (1 − 1)b = a, (2)
µa ⊕ (1 − µ)b = (1 − µ)b ⊕ µa, (3)
λ[µa ⊕ (1 − µ)b]⊕ (1 − λ)b = (λµ)a ⊕ (1 − λµ)b (4)

where each axiom holds for all a, b ∈ M and all µ, λ ∈ [0, 1]. We may call
these axioms, respectively, Closure, Connectedness, Commutativity, and
Reduction of Compound Mixtures. λ and µ are the mixture weights. In
the context of our example, these are probabilities and we will use these
terms interchangeably. An element a is called an outcome if there do not
exist distinct b and c such that a = µb ⊕ (1 − µ)c for some µ > 0.

The Reduction of Compound Mixtures axiom is implied4 by two eco-
nomically distinct properties, Associativity and Reducibility, which are,
respectively:

λ[µa ⊕ (1 − µ)b]⊕ (1 − λ)c = (λµ)a ⊕ (1 − λµ)

[
λ(1 − µ)

1 − λµ
b ⊕ (1 − λ)

1 − λµ
c
]

(5)

µa ⊕ (1 − µ)a = a. (6)

for all a, b ∈ M and all µ ∈ [0, 1] and λ ∈ [0, 1). Associativity states that the
order of mixing does not matter. Reducibility expresses that the process of
mixing is irrelevant.

4Notably, Associativity is not implied by Reduction of Compound Mixtures as Exam-
ple 1 in Mongin (2001) shows. I thank an anonymous referee for pointing this out.
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Example. The classical example of a mixture set is a set of lotteries on a set
of alternatives X. These can be formalized as {p : X → [0, 1]|∑x∈X p(x) =
1} with a mixture operation fulfilling (αp ⊕ (1 − α)q)(x) = αp(x) + (1 −
α)q(x) for all x ∈ X. Notice that in our example, a decision process
in which a decision maker chooses Bus with probability 1/2 or another
Bus is not the same as the trivial decision process in which the decision
maker does not make a choice and receives a Bus with certainty. Lotteries
and mixture sets would not reflect this since 1

2Bus ⊕ 1
2Bus = Bus. In

procedural mixture sets we therefore remove the Reducibility axiom to
allow the procedural mixture set to distinguish between the decision
process involving a choice, 1

2Bus ⊕ 1
2Bus ̸= Bus and the trivial decision

process involving no choice, Bus. Thus, the mixture operation µa ⊕ (1 −
µ)b means in this context that the decision maker makes a time-consuming
decision with probabilities µ and 1 − µ between alternatives a and b and
that this decision is time-consuming even if the alternatives are effectively
identical. End of example.

Fishburn (1982) generalized mixture sets by replacing the identity =
with an equivalence relation in the mixture axioms. We now remove the
axiom of Reducibility and perform a generalization analogous to Fishburn
(1982)

Definition 1 (Procedural Mixture Set). A procedural mixture set ⟨S,⊕,≈⟩
is a set S endowed with a mixture operator ⊕ : S× S× [0, 1] → S and an
equivalence relation ≈ which fulfills for all a, b, c ∈ S and all µ ∈ [0, 1],
λ ∈ [0, 1):

1a ⊕ (1 − 1)b ≈ a, (7)
µa ⊕ (1 − µ)b ≈ (1 − µ)b ⊕ µa, (8)

λ[µa ⊕ (1 − µ)b]⊕ (1 − λ)c ≈ (λµ)a ⊕ (1 − λµ)

[
λ(1 − µ)

1 − λµ
b ⊕ (1 − λ)

1 − λµ
c
]

(9)

The Closure axiom of mixture sets is not needed given the definition
of the mixture operator. Connectedness and Commutativity remain un-
changed. Reduction of Compound Mixtures is replaced by Associativity.

Example. The data structure consisting of entries in the form of rows in
Figure 3 is a procedural mixture set given our assumptions about choice
probabilities and equivalent decision times discussed in Section 2. To see
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this, we now specify the set S, the operation ⊕, the equivalence relation ≈,
and the resulting equivalence classes S/ ≈.

As the set S we employ the set of binary weighted trees. A binary
weighted tree M = (N,≪) ∈ S is a set of nodes N ∪ {0} endowed with
a relation ≪⊂ (N ∪ {0}) × N such that for all n ∈ N, there is exactly
one m ∈ N ∪ {0} such that m ≪ n and either no or exactly two distinct
o ∈ N such that n ≪ o. For each branch (m, n) ∈≪ there is a real number
w(m, n) ∈ [0, 1] such that w(m, n) + w(m, o) = 1 if (m, o) ∈≪. A decision
process is a binary weighted tree with each node representing a decision
over an unobservable attribute. The relative choice probabilities are given
by the weights attached to each branch. Intermediate nodes have the
interpretation of attributes while terminal nodes have the interpretation of
alternatives.

The mixture operation µa ⊕ (1 − µ)b of binary trees a and b is the
binary tree in which at the origin 0 there are two branches with weights µ

and 1 − µ after which the subtrees a and b follow, respectively.
Let the terminal weight of a terminal node o be the product w(0, k) ·

w(k, l) · . . . · w(o, n) · w(n, m). The equivalence relation ≈ identifies binary
trees a and b if the tuple of nonzero terminal weights of a is a permutation
of the tuple of nonzero terminal weights of b. Thus, each equivalence class
can be represented by by an (unordered) tuple (µ1, . . . µn) of numbers
µi ∈ (0, 1] such that ∑n

i=1 µi = 1, as depicted in Figure 5.
It is straightforward to show that (S,⊕,≈) as defined fulfill the proce-

dural mixture set axioms. Connectedness holds since only the nonzero
terminal weights matter for the equivalence classes of ≈. In the context
of our example, this means that alternatives with a zero probability of
being chosen can be treated as being not available. Commutativity holds
because we can permute the terminal weights within the equivalence
classes of ≈. In the context of our example, this means that the order
in which the alternatives are listed does not matter. Associativity holds
because restructuring the tree in a way permitted by Associativity does not
change the tuple of terminal weights. In the context of our example, this
means that we cannot observe whether a decision maker uses a particular
attribute to first narrow down the choices. We do not observe any potential
intermediate choice but only the final choice probabilities and decision
times across all available alternatives. The equivalence relation ≈ goes
even further than just fulfilling the procedural mixture set axioms – it also
imposes that the exact alternatives do not matter for decision times.

End of example.
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We are interested in binary relations on procedural mixture sets. A
function U : S → R is called a representation of ≿ if a ≿ b if and only if
U(a) ≥ U(b).

Example. Decision times naturally induce a binary relation on the proce-
dural mixture set discussed above. a ≿ b holds if and only if the decision
process a takes at least as long as the decision process b. In this context, the
symbol ≿ therefore does not have the common interpretation of “weakly
preferred”. End of example.

In particular, we are interested in the following representation of binary
relations on procedural mixture sets.

Definition 2 (Mixture Entropy). A binary relation ≿ on S is a mixture
entropy value if there exists a function U : S → R called a mixture entropy
and parameters q ∈ R, r ∈ R++ such that U represents ≿ and for all
a, b ∈ S and µ ∈ [0, 1],

U(µa ⊕ (1 − µ)b) =µrU(a) + (1 − µ)rU(b) + q · Hr(µ)

Hr(µ) =

{
−µ ln µ − (1 − µ) ln(1 − µ), r = 1
1−µr−(1−µ)r

r−1 . r ̸= 1
(10)

Example. If ≿ represents the decision times, then the decision times must
be a monotone transformation T of the representation U. For simplicity,
assume for the moment that T is the identity function, i.e., T(u) = u.5 For
such a linear T, the parameters that lead to the decision times in Figure 1

are characterized as follows: First, each trivial decision (where only one
option is available) takes a reaction time of 0.5 seconds. This can be seen
as the non-decision component of a response time (Luce, 1986). Second,
the most difficult binary decision (in which the choice probabilities are
equal) takes 1.5 seconds. Let the deliberation time of this decision process
be the decision time minus the reaction time, i.e. 1 second. Third, given
any decision process, if we replace every final option by repeating the
exact same decision process, then the deliberation time doubles. For
example, four options that are equally likely to be chosen take twice the
deliberation time, i.e., 2 seconds, as two equally likely options. Specifically,
the parameters of the mixture entropy value are r = 1 and k = 1/ ln 2.
In the remainder of this section, we provide a set of simple axioms that

5In Section 4, we will see in more detail how the parameters affect decision times
when T is arbitrary.
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characterize when the decision times are an increasing transformation of
(10). End of example.

Let ≿ be a relation on a procedural mixture set S. We use the symbols
∼ and ≻ to denote the symmetric and asymmetric parts of ≿. We assume
the following classical axioms:

Axiom 1 (Weak Order). ≿ is complete and transitive.

A weak order is nontrivial if for some a, b, a ≿ b but not b ≿ a.

Example. While transitivity is plausible in the context of decision times,
completeness is a fairly strong assumption. It requires that we have
sufficiently many alternatives that can be offered to decision makers such
that any decision process with an arbitrary probability of choices can be
compared with any other decision process in its duration. This might not
hold in case the set of alternatives is not rich enough. End of example.

Axiom 2 (Continuity). For any a, b, c ∈ S, the sets {µ|µa ⊕ (1 − µ)b ≿ c}
and {µ|c ≿ µa ⊕ (1 − µ)b} are closed.

Example. In the context of our example, a plausible violation of Continuity
arises for sequences of decision processes where the probability of one
alternative being chosen approaches zero. An alternative that is extremely
unlikely to be chosen may nonetheless distract decision makers and its
presence may increase the duration it takes them to make a decision.

End of example.

Axiom 3 (Independence). If a, a′, b ∈ S, µ ∈ (0, 1) then a ≿ a′ ⇔ µa ⊕ (1 −
µ)b ≿ µa′ ⊕ (1 − µ)b.

Our Independence axiom needs to be slightly stronger than that of
Herstein and Milnor (1953). Reducibility allows them to generate our third
axiom from a weaker assumption requiring only indifferences.

Example. In the context of our example, Independence means that the
decision duration of a decision process is increasing in the duration of
every sub-decision process. In a process that can be written as µa ⊕ (1 −
µ)b, the greater the decision time of a, the greater the decision time of
µa ⊕ (1 − µ)b. Specifically, consider the comparison of decision times of
the decision process between an airplane and a car and between a bus
and a car. These only differ on the sub-decision process in case a car is
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not chosen. If the reaction time of the trivial decision process offering
the airplane is just as long as the reaction time of being offered the bus,
Independence requires that also the decision process of the choice between
an airplane and a car takes just as long as the decision process of a bus
and a car. End of example.

Theorem 1. Let ≿ be a binary relation on a procedural mixture set ⟨S,⊕,∼⟩.
Then the following two statements are equivalent.

1. ≿ fulfills axioms 1-3.

2. ≿ is an entropy mixture value.

If U1 and U2 are entropy mixture value representations of the same nontrivial
weak order, then r1 = r2, and if r1 = 1, then U1 = ϕU2 + ψ and q1 = ϕq2 and
if r1 ̸= 1, then U1 = ϕU2 + ψ and q1 = ϕq2 + ψ where ϕ ∈ R+ and ψ ∈ R.

We have (recursively) characterized two possible representations. Either
we obtain the expected entropy mixture value of the mixed elements plus
the Shannon (1948) entropy. Alternatively, we obtain the expected entropy
mixture value under power-form probability distortions plus the Tsallis
(1988) entropy. We delay the interpretation of the parameters of the model
until discussing their comparative statics in Section 4. We first show that
the characterization highlights a difficulty in finding plausible extensions
of the drift-diffusion model of decision times.

Example. It is noteworthy that we have only characterized a representation
of the decision times and not the exact decision times. Thus, the actual
decision times can be any increasing transformation of U. Therefore,
the representation with r = 1, q > 0 and U(x) = 0 for trivial decision
processes x is for example consistent with any model of binary decision
processes in which the decision duration of µx⊕ (1− µ)y is strictly increas-
ing in min(µ, 1 − µ). This holds for the drift-diffusion model of Ratcliff
(1978) (but also an infinitude of other models). To obtain the drift-diffusion
model, the monotone transformation T : R → R would be

T = f ◦ (H1)
−1 (11)

f (µ) = k · 1 − µ − µ

ln(1 − µ)− ln(µ)
(12)

(H1)
−1(u) = min{µ ∈ [0, 1] : H1(µ) = u}. (13)
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In other words, T first recovers the probability µ ≤ 1 − µ from the entropy
H1(µ) and then applies the formula for the average decision time in a
drift-diffusion model. This seems like forcing the issue but reveals the
reason for the difficulty of finding extensions of the drift-diffusion model
to multiple options: Suppose this extension fulfills Axioms 1-3 and agrees
with the drift-diffusion model on binary choices. Since the decision times
of choices among two and three alternatives overlap, the awkward form of
T also applies to three-element choices and for such choices (H1)

−1 does
not recover a choice probability.

Extensions of the drift-diffusion model therefore face the following
tradeoff: (1) they may give up on decision times of a process being
continuously increasing in the decision times of sub-decision processes or
(2) they may give up on choice probabilities fulfilling Luce’s IIA axiom
or (3) they accept the awkward form of T and try to find a stochastic
process and boundary conditions that generate decision times that can be
represented by an entropy. End of example.

Remark 1. The multi-mixture representations follow from compounding,
for example if r = q = 1,

U
(

αa ⊕ (1 − α)

(
β

1 − α
b ⊕ γ

1 − α
c
))

=αU(a)− α ln α + βU(b)− β ln β + γU(c)− γ ln γ. (14)

which is the expectation of U plus the Shannon entropy over three compo-
nents.

Similar results hold for r ̸= 1.
In many contexts, the Shannon (1948) measure is the standard measure

of entropy. The use of the Shannon entropy in the previous representation
entails the following property.

Axiom 4 (Mixture Cancellation). For all a, a′, b, b′ ∈ S and µ, λ ∈ (0, 1),

µ

(
µ

µ + λ
a ⊕ λ

µ + λ
a
)
⊕ (1 − µ − λ)b ∼µ

(
µ

µ + λ
a′ ⊕ λ

µ + λ
a′
)
⊕ (1 − µ − λ)b′

(15)

⇔ (µ + λ)a ⊕ (1 − µ − λ)b ∼(µ + λ)a′ ⊕ (1 − µ − λ)b′. (16)

It is straightforward to apply Mixture Cancellation to Theorem 1 to
obtain the following corollary.
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Corollary 1. Let ≿ be a binary relation on a procedural mixture set ⟨S,⊕,∼⟩.
Then the following two statements are equivalent.

1. ≿ fulfills axioms 1-4.

2. ≿ is an entropy mixture value with r = 1.

Example. In the context of decision processes Mixture Cancellation has a
straightforward interpretation: Let a be a more difficult decision than a′

and b′ be more difficult than b exactly such that (16) holds. The decision
processes in (15) can be understood as identical to the ones in (16) except
that before6 the sub-decisions a and a′ an additional decision with relative
probability µ

µ+λ is performed. The condition thus says that the different
deliberation times of a and a′ do not “interact” with the additional de-
liberation time from adding an additional decision. An example of such
choices are given by the domain of choices that follow Hick’s law (Hick,
1952). Hick observed that with remarkable precision the response time to
press a button in response to a signal increases logarithmically in the num-
ber of buttons, similar to how the Shannon entropy of uniform variables
increases logarithmically in the number of outcomes. This suggests that
r = 1 and T being the identity are suitable to model exact decision times
for choices where Hick’s law applies.

However, this might not be the case if the decision makers become
increasingly constrained in their decision making capability as the number
of options increases. In this case, we would expect that if a takes longer
than a′, then

(µ + λ)a ⊕ (1 − µ − λ)b ∼ (µ + λ)a′ ⊕ (1 − µ − λ)b′

⇒ µ

(
µ

µ + λ
a ⊕ λ

µ + λ
a
)
⊕ (1 − µ − λ)b

≻ µ

(
µ

µ + λ
a′ ⊕ λ

µ + λ
a′
)
⊕ (1 − µ − λ)b′.

(17)

That is, the additional decision with relative probability µ/(µ+λ) interacts
with the decision processes a and a′ such that decision times increase more
when this decision precedes the more complicated decision process a. As
we will see in Section 4, such behavior is closely linked to the parameter
r. End of example.

6By Associativity, the additional decision could also be performed after a or a′.

15



We end this section with a corollary that applies the main theorem to
stochastic choice models and that makes some of the informal discussion
of the example application precise. Given the close link between Luce’s IIA
of decision probabilities and Associativity, it is natural to simultaneously
characterize the Luce model choice probabilities and entropy mixture
decision times.

Let X be a set of alternatives and C be the set of finite subsets of X.
A stochastic choice function is a function p : C×X → [0, 1] such that for
all C ∈ C, x ̸∈ C, p(x, C) = 0 and ∑x∈C p(x, C) = 1. For any C ⊆ D ∈ C,
we further define p(C, D) = ∑x∈C p(x, D). A decision time τ : C → R+ is
a function that tells us for every finite subset of alternatives how long it
takes (on average) to make a decision.

We introduce the following joint model of choice probabilities and
decision times:

Definition 3 (Luce-Hick Model). A stochastic choice function p and a
decision time τ form a Luce-Hick model if

1. there exists a function v : X → R such that for all C ∈ C and x ∈ C,

p(x, C) =
exp(v(x))

∑y∈C exp(v(y))
, and (18)

2. there exists a continuous, strictly monotone function T and r ∈ R++

such that for all C ∈ C,

T ◦ τ(C) =

{
1

r−1 (1 − ∑x∈C p(x, C)r) r ̸= 1

∑x∈C p(x, C) ln p(x, C) r = 1
(19)

and τ({x}) = τ({y}) = T−1(0) for all x, y ∈ X.

That is, in the Luce-Hick model the choice probabilities follow the Luce
model of stochastic choice and a monotone transformation of the decision
times (of equiprobable decisions) follows Hick’s law. Compared with the
empirical results of Hick (1952), the above definition makes the stronger
claim that also the decision times of non-equiprobable decision processes
can be represented by an entropy but neither requires T to be linear nor
the entropy to be in Shannon form, i.e., r = 1.

In order to characterize the Luce-Hick model via the procedural mix-
ture set theorem, we require a sufficiently rich set of outcomes to generate
decision processes with arbitrary choice probabilities.
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Definition 4 (Richness of Outcomes). The set of alternatives X fulfills
richness if for every x ∈ X and every µ ∈ [0, 1] there is a countable number
of alternatives {y1, y2, . . .} such that p(x, {x, yi}) = µ.

We now introduce conditions that (given a rich set of alternatives) are
necessary and sufficient to characterize the Luce-Hick model.

Definition 5 (Positivity). A stochastic choice function p and a decision
time τ fulfill positivity if for all x, y ∈ X, p(x, {x, y}) > 0 and τ({x, y}) >
τ({x}).

Thus, every element of an opportunity set has a nonzero probability
of being chosen and there is a positive deliberation time for the choice
between two items.

Definition 6 (Independence of Irrelevant Alternatives). A stochastic choice
function p fulfills IIA if for all C ∈ C we have that

p(x, {x, y})/p(y, {x, y}) = p(x, C ∪ {x, y})/p(y, C ∪ {x, y}) (20)

for all x, y ∈ C.

Luce’s choice axiom states that relative probabilities are unaffected by
the addition of other options. We next impose that comparative decision
times are unaffected by additional options.

Definition 7 (Independent Decision Times). A stochastic choice function
p and decision time τ fulfill independence of decision times if for all
C, D, E ∈ C such that (C ∪ D) ∩ E = ∅ and p(C, C ∪ E) = p(D, D ∪ E) it
holds that

τ(C) ≥τ(D)

⇔ τ(C ∪ E) ≥τ(D ∪ E). (21)

This states that the decision time of a decision process is monotone in
the decision time of its subprocesses, i.e., the time it would take to make a
choice from a subset of the alternatives.

Definition 8 (Continuity of Decision Times). A stochastic choice function p
and decision time τ fulfill continuity of decision times if for all sequences
of sets (Ak ≡ {ak

1, . . . , ak
n})k and A = {a1, . . . , am}, if p(Ak, ak

i ) → p(A, ai)
for all i ∈ {1, . . . , m} and p(Ak, ak

i ) → 0 for all i ∈ {m + 1, . . . , n} then
τ(Ak) → τ(A).
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Continuity has two main implications. First, it imposes that decision
times are continuous in the choice probabilities of alternatives and only
these choice probabilities matter for decision times. Second, it imposes
that given a limit n on the number of alternatives, as choice probabilities
of some (m − n many) alternatives converge to zero, they do not affect the
decision times.

The following Corollary is now obvious:

Corollary 2 (Choice Probabilities and Decision Times). Suppose X fulfills
richness in outcomes. Then the following statements are equivalent.

1. p and τ fulfill Positivity, IIA, Independence of Decision Times, and Conti-
nuity of Decision Times.

2. p and τ form a Luce-Hick model.

Interestingly, for very different reasons Luce was aware of the impor-
tance of his choice axiom for the use of entropy in psychophysics, writing
“[...] information theory implicitly presupposes the consequences of [IIA],
which are relatively strong—specifically, when discrimination is imperfect,
it means that choice behavior can be scaled by a ratio scale” Luce (1959,
p.12).

4 Comparative Statics

In the value of a procedural mixture, U(µa ⊕ (1 − µ)b), the parameter
q sets a threshold for U(a) and U(b) that determines whether mixing
increases U or not. To make this precise, we introduce a positive and a
negative value of mixing.

Definition 9 (Value of Mixing). ≿ exhibits a negative (positive) value of
mixing at a ∈ M if a ≻ (≺)µa ⊕ (1 − µ)a.

The following result is then straightforward:

Proposition 1 (Monotone Mixing). If ≿ has a mixture entropy representation,
then the following statements are equivalent:

1. ≿ exhibits a negative (positive) value of mixing at a,

2. ≿ exhibits a negative (positive) value of mixing at µa ⊕ (1 − µ)a,
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3. U(a)(r − 1) > (<)q.

If for some a ∈ S it is the case that U(a)(r − 1) ≤ q, then U(µa ⊕ (1 −
µ)a) ≥ U(a). From this result follows that if r > 1, then iteratively mixing
an element with itself yields a sequence of elements for which U converges
to q. If r ≤ 1, then U diverges to ∞ or −∞, depending whether for the
initial element U(a)(r − 1) ≷ q.

Example. In our example data of Figure 1, the value of mixing is positive.
If r > 1, then the mixture entropy U converges to q as the number of
options increases. If r ≤ 1, then additional options let U diverge to ∞. It
is noteworthy that this does not mean that decision times diverge. Since
the representation is ordinal, the actual decision times T ◦ U may still
be bounded in case limu→∞ T(u) < ∞. Thus, limit behavior of decision
times alone does not allow us to distinguish between r < 1 and r >
1. End of example.

In addition to setting a threshold for a positive value of mixing, q
controls in a procedural mixture (e.g., U(µa ⊕ (1 − µ)b)) the relative im-
portance of value derived from the mixture weight (Hr(α)) compared with
the value from the mixed elements (U(a) and U(b)). The relevant compar-
ative statics results are relegated to Appendix D because these results are
only relevant if there are outcomes x ≻ y as the following remark shows:

Remark 2. If S is generated from finite procedural mixtures of a set X

and for all x, y ∈ X, U1(x) = U1(y), and U2(x) = U2(y) then U1 and U2

represent the same relation if and only if the signs of U1(x)(r1 − 1)− q1

and U1(x)(r1 − 1)− q1 are identical and r1 = r2.

It follows from this remark that the magnitude of the parameter q only
matters in comparison to a cardinal value of outcomes, (i.e., elements
that are not generated from mixtures themselves). If there do not exist
outcomes x ≻ y, then by the uniqueness properties of the representation
we can find an affine transformation of U such that the valuation of any
existing outcomes is equal to zero. Any subsequent multiplication of q by
a positive factor results in an increasing linear transformation of U (which
does not change the represented relation).

Example. The previous remark is the underlying reason why the Luce-
Hick model only has a parameter r and no parameter q. It is plausible that
trivial decisions always have the same reaction time and that nontrivial
decisions take longer than trivial decisions. Thus, if X ∋ x, y refers to the
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set of trivial decisions and τ(x) = τ(y) for all its elements, then the only
meaningful parameter is r. End of example.

We now turn to the interpretation of the parameter r. The parameter r
controls the degree of the effect of mixing on the value. That is, it controls
how much the value increases (or decreases) by an additional mixing
stage.

Definition 10 (Comparative Value of Mixing). ≿1 yields a higher value of
mixing than ≿2 if for all α, β, γ < 1/2 and some d ∈ S at which ≿1 and
≿2 exhibit a positive value of mixing,

αd ⊕ (1 − α)d ≿1 β(γd ⊕ (1 − γ)d)⊕ (1 − β)(γd ⊕ (1 − γ)d),

then

αd ⊕ (1 − α)d ≿2 β(γd ⊕ (1 − γ)d)⊕ (1 − β)(γd ⊕ (1 − γ)d).

In words, if under ≿2 a binary mixture has a greater value than a
mixture across four elements, then this must be also the case under ≿1.

Proposition 2. Let ≿1 and ≿2 be a mixture entropy value with representations
U1 and U2 and parameters r1, q1 and r2, q2, respectively. Then the following
statements are equivalent.

1. ≿1 yields a higher value of mixing than ≿2.

2. r1 ≥ r2.

Example. The decision data of Hick (1952) suggest that (given a linear T),
r = 1 is a plausible parameter for the decision of which one of a number
of buttons n on a keyboard to press. This suggests that the decision times
of let’s say whether to press a button with the left or right hand does not
affect the additional decision time from choosing whether to press with
the index finger or the pinkie. In contrast, preferential choices such as the
commonly in experiments studied snack choices may become increasingly
complex as the number of alternatives rises. Choices between food items
may be relatively simple between two items but may become increasingly
complex as additional options are added. Preferential choices would
then exhibit a higher value of mixing, leading to a different parameter
r. End of example.
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5 Disjoint Independence

Violations of interiority (and thus mixture entropy representations) do not
necessarily need to arise from a violation of reducibility. Instead, they
may also arise from a weakening of the Independence axiom to mixtures
between elements with disjoint support. In this case, only a subset of
the relation ≿ can be represented by the functional form characterized
previously. The present section makes this precise.

Example. In the introductory example, we assumed that choice relevant
attributes are irrelevant for decision times once we control for the choice
probabilities. This assumption may only be valid for a carefully chosen
set of options. In our example data of Figure 1, in the choice between two
buses each is chosen with equal probability just as in the choice of a bus
and an airplane each is chosen with equal probability. However, the choice
between the similar alternatives is perhaps made much faster than the
choice between the more different alternatives. We may therefore want to
construct a model that allows for the decision times of these two decision
processes to differ.

Blue Bus Red Bus

Bus

Car

Airplane Bus

Public

Car

Figure 6: Blue Bus Red Bus Paradox
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Figure 7: Blue Bus Red Bus Paradox
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To exemplify this more clearly, Figure 7 depicts the well-known red
bus/blue bus paradox of Debreu (1960). There are two major concerns.
First, the IIA axiom of Luce (1959) may not hold if the substitutability
between the blue and the red bus is higher than the substitutability be-
tween either bus and the car. For example, even if the blue bus and red
bus are equally likely and either bus is equally likely to an airplane, the
probability of choosing a car in the left decision process may be more
likely than the probability of choosing a car in the right decision process.

Second, the decision time on the left may be lower than the decision
time on the right. Making a choice between the blue bus and the red
bus may be very fast once one realizes that the two buses take the same
route. The choice between either colored bus and an airplane may involve
more careful deliberation. Thus, decision times might not only depend
on choice probabilities but also on the attributes by which alternatives are
distinguished. Note that a faster decision time on the left than on the right
also violates Independence in case that the reaction times of all trivial
decision processes are identical.

To account for these two issues, we need to have a notion of how
different two alternatives are. We can formalize this via attributes. Follow-
ing Nehring and Puppe (2002) for a given universe of alternatives X, an
attribute is a subset of X with the interpretation that it contains all elements
of X that share this attribute. We define A ⊂ 2X as a set of choice-relevant
attributes. The set of attributes can be exogeneously given or is under
some circumstances identifiable from choice data (Kovach & Tserenjigmid,
2022). End of example.

Like in Section 3, we first provide a formal result for (this time classical)
mixture sets and then provide an application to decision times that uses
the above introduced attribute structure. Let Z be a set. For a given
mixture set M, a support is a function supp : M → 2Z that fulfills for
all a, b ∈ M and all α ∈ (0, 1): supp(αa ⊕ (1 − α)b) = supp(a) ∪ supp(b).
We say that M is rich (with respect to its support) if the image supp(M)
is closed under nonempty intersections and under nonempty relative
complements. A subset Z of Z is essential if there exist a, b ∈ M such that
supp(a) ⊆ supp(b) = Z and a ̸∼ b.

Example. Suppose A is a set of choice-relevant attributes. We can then
generate a support by letting Z = 2A be the power set of choice relevant
attributes. The support supp(x) = {A ∈ A|x ∈ A} then assigns every
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alternative x ∈ X the set of its choice relevant attributes. Any mixture be-
tween two alternatives with nonzero mixture weights has the union of the
attributes of the alternatives involved in the mixture, etc.. End of example.

Axiom 5 (Disjoint Independence). A relation ≿ on a mixture set M with a
support supp fulfills disjoint independence if for all a, a′, b ∈ M, µ ∈ (0, 1),
if (supp(a) ∪ supp(a′)) ∩ supp(b) = ∅ then

a ≿a′

⇔ µa ⊕ (1 − µ)b ≿µa′ ⊕ (1 − µ)b. (22)

We can embed a mixture set M with a relation ≿∗ fulfilling Axioms 1,2,
and 5 partly into a procedural mixture set S with a relation ≿ fulfilling
Axioms 1-3. If there are sufficiently many essential subsets in the support,
the embedded part has the same uniqueness properties as the mixture
entropy representation and we obtain the following theorem:

Theorem 2 (Procedural Mixture Set Embedding). Let M be a rich mixture
set with support supp and ≿∗ be a binary relation on M such that there exist at
least three disjoint and essential subsets of X.

Then the relation ≿∗ fulfills Axioms 1, 2, and 5 if and only if there exists a
continuous function U : M → R representing ≿∗ such that for some q ∈ R, r ∈
R++

U(µa ⊕ (1 − µ)b) =µrU(a) + (1 − µ)rU(b) + q · Hr(µ) (23)

Hr(µ) =

{
−µ ln µ − (1 − µ) ln(1 − µ), r = 1
1−µr−(1−µ)r

r−1 , r ̸= 1
(24)

if supp(a) ∩ supp(b) = ∅.

Chen and Rommeswinkel (2020) prove a similar result for four disjoint
subsets using a different proof technique.

Example. Since a characterization requires a sufficiently rich set of decision
processes, we still require a rich set of outcomes such that for any two
given goods a and b with characteristics A and B, we still need to be
able to induce all possible choice probabilities between 0 and 1. This is
implausible for goods with a high degree of standardization (e.g., candy
bars) but not implausible for goods that are less standardized (e.g., more
or less visually appealing fruits). The perhaps easiest way to achieve
this experimentally may be to bundle the goods of different attributes
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with different monetary amounts (or changing the likelihood/timing of
receiving the good) to induce different choice probabilities. The remainder
of this section makes this idea precise. End of example.

We now suppose that the decision maker chooses between combina-
tions of one of a (possibly finite) set of material alternatives x ∈ X with
choice-relevant attributes A and payoffs. If the decision maker chooses x
from a finite set C ∈ C, then she receives in addition the monetary payoff
m(x) ∈ R+. RX

+ denotes the set of possible payoff functions. Importantly,
and in contrast to Section 3, we do not allow the same alternative x ∈ X

to appear more than once among the possible options. Since we presume
that we know the decision relevant set of attributes, we can model similar
options by making their attributes identical.

A stochastic choice function is in this section a function p : X× C×RX →
[0, 1] that returns a choice probability p(x, A, m) of an alternative x being
chosen from a set X given payoffs m and fulfills firstly that p(x, C, m) = 0 if
x ̸∈ C and secondly that p(x, C, m) = p(x, C, m′) if ∀y ∈ C, m(y) = m′(y).

Definition 11 (Restricted Luce-Hick Model). A stochastic choice function
p and a decision time τ form a restricted Luce-Hick model if

1. for all C ∈ C, τ(C, m) ≡ f ({p(x, C, m)}x∈C) is continuous, and

2. there exists a function v : X → R such that for all C ⊆ D and x ∈ C,

p(x, C, m) =
exp(v(x), m(x))

∑y∈C exp(v(y), m(y))
(25)

whenever all elements in D have mutually disjoint supports, and

3. there exists a continuous, strictly monotone function T and a param-
eter r ∈ R++ such that for all C ⊆ D,

T ◦ τ(D, m) =p(C, D, m)r · T ◦ τ(C, m) + p(D − C, D, m)r · T ◦ τ(D − C, m)

+ Hr(p(C, D, m)) (26)

whenever all elements in D have mutually disjoint supports.

To characterize the Restricted Luce-Hick model, we make the following
axiomatic impositions.

Definition 12 (Positivity). For all C ∈ C, x, y ∈ C, m ∈ RX, p(x, C, m) > 0
and τ({x, y}, m) > τ({x}, m).
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Thus, every alternative in any opportunity set has a strictly positive
chance of being chosen and deliberation times of binary choices are posi-
tive.

Definition 13 (Monotonicity in Payoffs). For all C ∈ C and x ∈ C, if m(x) ≥
m′(x) and for all y ∈ C − {x}, m(y) ≤ m′(y), then p(x, C, m) ≥ p(x, C, m′)
and if {mk(x)} → ∞ and {mk(y)} → m(y), then {p(x, C, mk)} → 1.

Thus, for a fixed set of alternatives, the choice probability is non-
decreasing in the payoff of that alternative and non-increasing in the
payoffs of other alternatives. As the payoff of a single alternative goes to
infinity, its probability to be chosen converges to 1.

Definition 14 (Continuity in Payoffs). If {mk} → m, then {p(x, C, mk)} →
p(x, C, m) for all C ∈ C and all x ∈ C. Moreover, whenever for some
sequence {mk} it holds that {p(x, C, mk)} → p(x, C, m) for all x ∈ C, then
{τ(C, mk)} → τ(C, m).

Thus, for a fixed set of alternatives, if the payoff function converges,
then the choice probabilities also converge. If the probabilities converge,
then the decision times converge, too.

Definition 15 (Restricted IIA). A stochastic choice function p fulfills re-
stricted IIA if for all D ∈ C containing only elements with mutually disjoint
support we have that

p(x, {x, y})/p(y, {x, y}) = p(x, D)/p(y, D) (27)

for all x, y ∈ D.

Restricted IIA effectively means that choice probabilities are only re-
quired to follow the Luce (1959) model in case their attributes do not
overlap with those of other alternatives.

Definition 16 (Restricted Decision Time Independence). A decision time τ

fulfills restricted decision time independence if whenever all elements of
D ∈ C have mutually disjoint supports, A, B, C ⊂ D fulfill (A∪ B)∩C = ∅,
and m, m′ ∈ RX are such that for all y ∈ C, p(y, A∪C, m) = p(y, B∪C, m′)
it holds that

τ(A, m) ≥τ(B, m′)

⇔ τ(A ∪ C, m) ≥τ(B ∪ C, m′). (28)
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Thus, for elements with disjoint attributes, comparative decision times
are independent of common alternatives that have the same probability.

Corollary 3 (Decision Time Representation). Suppose X is endowed with a
support supp and there are at least six alternatives with disjoint support from all
other alternatives. Then the following statements are equivalent.

1. (p, τ) fulfill Positivity, Monotonicity in Payoffs, Continuity in Payoffs,
Restricted IIA, and Restricted Decision Time Independence.

2. (p, τ) have a Restricted Luce-Hick representation.

The assumption of six alternatives having no attributes in common
with any other alternative is the simplest way of guaranteeing that the
support of the mixture set induced by the attributes is coarse enough
to uniquely determine r and q. Interesting variations of Corollary 3 are
possible. For example, in the nested logit the IIA axiom holds whenever
the two alternatives x and y have the same attributes as the alternatives in
the sets C or whenever the alternatives both have distinct attributes from
the alternatives in C (Kovach & Tserenjigmid, 2022). Thus, in the nested
logit we have an associative structure not only in the disjoint attribute case
but also in the identical attribute case and can use Theorem 1 to embed
a procedural mixture set to characterize decision times which may have
different parameters r and q for different subsets of alternatives.

6 Literature

There are three branches of literature related to the present paper; a litera-
ture on axiomatic characterizations of entropies, a literature on axiomatic
characterizations of decision times, and a literature on mixture sets and
relaxations of the Reduction of Compound Mixtures axiom.

6.1 Characterizations of Entropy Functions

For a general survey of the literature of the characterization of information
measures, see Csiszár (2008).

Krantz et al. (1971, ch. 3.12) defined entropy structures and showed
that a relation represented by Hr fulfills the assumptions of an entropy
structure. However, they did not provide a characterization result of Hr
or H1. Their operation ◦ of an entropy structure captures the idea of
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a ◦ b denoting the physical system consisting of two independent physical
systems a and b. The mixture operation µa ⊕ (1 − µ)b instead better
applies to the mixture of distinguishable gases or liquids a and b with
proportion µ and thus our representation captures the so-called entropy of
mixing.

Closely related to the present paper is Luce et al. (2008b) in which the
utility of gambling is characterized as expected utility plus the entropy
of the lottery. There are three technical improvements the present paper
makes. First, Luce et al. (2008b) assume the existence of a status quo
consequence and directly impose that the utility of a gamble between the
status quo and some outcome ocurring in some event is separable. Second,
Luce et al. (2008b) assume that outcomes and gambles are closed under an
operation they call “joint receipt”, interpreted as receiving two gambles
simultaneously. They further assume that the utility over the two received
gambles is additive, i.e., that the utility of the joint receipt of lotteries is the
sum of the individual lotteries. Preferences over the gambles are therefore
independent and thus the decision maker’s risk attitude over one gamble
may not be influenced by whether the second gamble is risky or not. Third,
Luce et al. (2008b) assume the existence of kernel equivalents. The kernel
equivalent of a gamble is an outcome that when received simultaneously
with an event-resolving but payoff-irrelevant gamble leaves the decision
maker indifferent. Overall, their axioms are somewhat nonstandard and
lack the accessibility of the mixture sets introduced in Herstein and Milnor
(1953).

We show that only small adjustments to the standard axioms need
to be made to obtain entropy measures as a utility component. We do
not assume the joint receipt of gambles or the existence of a status quo
outcome. Additive separability instead naturally arises from the von
Neumann-Morgenstern Independence axiom. While Luce et al. (2008b)
assumes that certainty equivalents and kernel equivalents exist, our model
and axiomatization are consistent with the nonexistence of certainty equiv-
alents such as in the case when the mixture set is generated starting from
mixtures of a finite set of alternatives, mixtures of these mixtures, etc..

The literature on rational inattention has provided characterizations
of expected utility with entropy costs of attention (Caplin et al., 2017;
de Oliveira et al., 2017). Ellis (2018), Lin (2020), and Lu (2016) characterize
more general information cost functions. Most of this literature relies on
observations of choices over menus or alternatives and treats choices over
information structures as unknown.
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6.2 Decision Processes and Axiomatizations of Response

Times

With respect to our application to decision processes, there exists a large
literature on decision processes (Bogacz et al., 2006; Usher et al., 2013)
especially the drift-diffusion model (Ratcliff, 1978; Ratcliff et al., 2016).
Several studies have proposed models for decision times in decision pro-
cesses with multiple alternatives (Baldassi et al., 2020; Krajbich & Rangel,
2011; McMillen & Holmes, 2005; Tajima et al., 2019). Most closely related
to the present paper are the axiomatic studies of Baldassi et al. (2020) and
Echenique and Saito (2017).

Like the present paper, Baldassi et al. (2020) also employ the Luce
model to characterize decision times. They obtain the decision times of the
drift diffusion model for binary choice by imposing that across decisions
the accuracy (in our notation max(µ, 1 − µ)− 1/2) is proportional to the
product of the average decision time multiplied by the ease of comparison
ln(max(µ, 1 − µ))− ln min(µ, 1 − µ). This ad hoc functional imposition
generates decision times as in the drift-diffusion model for binary choices.
Their multi-alternative extension of the DDM, the Metropolis-DDM algo-
rithm, is not axiomatically characterized but made plausible by following
certain stylized facts from eye-tracking data for multi-alternative choice.
In contrast to the extremely parsimonious model of the present paper, this
leads to a model rich in parameters.7

Echenique and Saito (2017) axiomatize response times for binary choice
data. Similar to the present study, they obtain a representation of response
times instead of a direct characterization of the functional form of response
times. Different from the present study, they work with deterministic
choices and distinguish between the response time to choose a over b and
the response time to choose b over a. Most importantly, they address the
issue of finite data while the present study requires a rich data set fulfilling
(at least for a subset of the options) the IIA axiom.

7For every decision time limit, their model parameters include a measure across all
offered options, a partition of the offered options into consideration sets, and for each
consideration set an exploration matrix the size of the set.
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6.3 Mixture Sets and the Reduction of Compound Mixtures

Axiom

There is a vast literature of decision theoretic papers that employ the mix-
ture sets introduced by Herstein and Milnor (1953). Commonly the axioms
on preferences are being varied instead of the structure of the mixture
set. In contrast, Mongin (2001) examines under which conditions mixture
sets can be treated as convex subsets of a vector space. Ghirardato et al.
(2003) and Ghirardato and Pennesi (2020) further increase the applicability
of mixture set results by showing how (subjective) mixture sets can be
constructed from preferences over acts.

The Reduction of Compound Mixtures axiom has received substantial
attention. The literature on recursive utility models following Kreps and
Porteus (1978) analyzes intertemporal decision problems in which within
each time period the Reduction of Compound Mixtures axiom holds but
between time periods it does not. A large literature following Segal (1990)
remove the Reduction of Compound Mixtures assumption completely
and study two-period mixtures under various axioms on preferences.
In contrast to their work, this paper studies mixtures with an arbitrary,
finite number of stages and maintains that the order of resolution of
compounding is irrelevant while the process of mixing is not.

7 Conclusion

Our analysis provides a foundation for the study of violations of interiority
due to procedural aspects. The entropy representation is obtained by
relaxing the assumption that mixtures of an element with itself yields the
same element or by weakening the Independence axiom to mixtures of
sufficiently distinct elements. Entropy measures play an important role in
a large number of applications and the simple axiomatization provided in
this paper may prove useful in other contexts.

The application to decision processes provides a parsimonious model of
the relation between choice probabilities and decision times. It is perhaps
striking that the central prediction of the drift-diffusion model — that
decision times are monotone in how even the choice probabilities are — is
obtained from very simple assumptions about decision times for choices
between multiple alternatives. However, the result can also be understood
as an impossibility result; if one accepts that the decision time of a decision
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process should increase in the decision times of its subsets and the choice
probabilities fulfill IIA, then one has to accept that decision times are
related to choice probabilities in the somewhat restricted functional form
of an entropy. While the representation is ordinally consistent with the
binary drift-diffusion model, the very different functional form highlights
the difficulty of extending the drift-diffusion model to multiple options.

The application opens up two interesting research avenues. First, it is
interesting to consider variations of the decision times in the drift-diffusion
model by varying either the stochastic process or the calculation of the
average response time (e.g., using the mode or a generalized mean of
the stopping time). Second, the result on Disjoint Independence provides
a starting point for characterizations in which the entropy represents
decision times only on the domain of choices where the Luce model is
plausible. There is much recent interest in the literature on axiomatic
foundations of variations of the Luce model, e.g., the mixed logit (Saito,
2018), the nested logit with subjective attributes (Kovach & Tserenjigmid,
2022), or the conditional logit (Breitmoser, 2020). Axiomatically studying
decision times for such models would be an interesting avenue for future
research given the prevalence of stochastic choice in empirical applications.
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A Proof of Theorem 1

Proof. Neccessity is straightforward. We prove sufficiency.
Let Q = S/ ∼ be the quotient set of S with respect to the equivalence

relation ∼. Note that whenever a, b ∈ S and a ∼ b, then any utility
representation U must fulfill U(a) = U(b). Note further that Q is a
procedural mixture set when endowed with ≿∗ such that q ≿∗ r if and
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only if a ≿ b for some a ∈ q and b ∈ r. Thus, finding a utility on Q is
equivalent to finding a utility on S. We therefore assume for the remainder
of the proof that S = Q.

Let the order topology on S be the topology generated by the subbase
of upper and lower contour sets of the asymmetric part of ≿.

Lemma 1. S is topologically connected under the order topology.

Proof. If S is not connected, then it is the union of two nonempty disjoint
open sets S′ and S′′. Take any elements s′ ∈ S′ and s′′ ∈ S′′. The set S′′′ =
{a|∃µ : a = µs′ ⊕ (1 − µ)s′′} is disconnected in the subspace topology by
the disjoint nonempty open sets S′ ∩ S′′′ and S′′ ∩ S′′′. Since the upper
and lower contour sets of ≿ form a subbase of S, the upper and lower
contour sets of ≿ in S′′′ form a subbase of the subspace topology. By
Axiom 2, the bijection f : µ 7→ µs′ ⊕ (1 − µ)s′′ is then continuous. But
then the preimages f−1(S′ ∩ S′′) and f−1(S′′ ∩ S′′′) are open, disjoint, and
disconnect the unit interval, a contradiction.

Lemma 2. ≿ is coseparable, i.e.,

µa ⊕ (1 − µ)b ∼ µ̄ā ⊕ (1 − µ̄)b̄ (29)
µa′ ⊕ (1 − µ)b ∼ µ̄ā′ ⊕ (1 − µ̄)b̄ (30)
µa ⊕ (1 − µ)b′ ∼ µ̄ā ⊕ (1 − µ̄)b̄′ (31)

jointly imply

µa′ ⊕ (1 − µ)b′ ∼ µ̄ā′ ⊕ (1 − µ̄)b̄′ (32)

Proof. Using Commutativity and Associativity it is straightforward to
show that

1/2[µa ⊕ (1 − µ)b]⊕ 1/2[µa′ ⊕ (1 − µ)b′] (33)
=1/2[µa′ ⊕ (1 − µ)b]⊕ 1/2[µa ⊕ (1 − µ)b′] (34)

for any µ, a, b, a′, b′. Using Axiom 3 together with the assumptions stated
above then guarantee the desired result.

Lemma 3. ≿ can be represented by continuous U, F such that

U(µa ⊕ (1 − µ)b) = F(a, µ) + F(b, 1 − µ) (35)
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Proof. We either obtain the representation trivially, if a ∼ b for all a, b ∈ S or
using the main theorem of Qin and Rommeswinkel (2018) which provides
a representation theorem for weak orders on (open subsets of) X× Y× Z

with the representation f (x, z) + g(y, z). Here we choose X = S, Y = S,
and Z = (0, 1) and endow the space with the product topology of the
order topologies and the subspace topology of the reals. Thus, we will first
obtain the representation on µ ∈ (0, 1) and then extend it to [0, 1] using
Axiom 2. To apply the main theorem of Qin and Rommeswinkel (2018), we
require the following conditions: essentiality, conditional independence
of the X and Y dimension given Z, coseparability of X and Y given Z,
continuity in the product topology, and topological connectedness of X, Y,
and Z.

Since we have a product space, the well-behavedness assumptions of
Qin and Rommeswinkel (2018) are not needed and we also only need
essentiality instead of strict essentiality. Essentiality requires that for at
least some µ and some a, then there exist some b, b′ such that µa ⊕ (1 −
µ)b ̸∼ µa ⊕ (1 − µ)b′ and for some a, b there exist some µ, µ′ such that
µa ⊕ (1 − µ)b ̸∼ µ′a ⊕ (1 − µ′)b. The former is guaranteed by Axiom 3

and the exclusion of the case a ∼ b for all a, b ∈ S. The latter is guaranteed
by Axiom 2 and the exclusion of the case a ∼ b for all a, b ∈ S. Next, we
need conditional independence of the X and Y dimensions for fixed Z

dimension. This holds by Axiom 3. Further, coseparability of the X and
Y dimension given Z has been shown above. Continuity of ≿ holds in
the order topology on S. However, we require continuity in the product
topology on S× S× (0, 1). By Axioms 2 and 3 the product topology is
finer than the order topology on S, guaranteeing continuity in the product
topology. Topological connectedness of the product topology follows from
the connectedness of its components X, Y, and Z. The interval (0, 1) is
obviously connected and each component S is connected in the order
topology.

From Qin and Rommeswinkel (2018) then follows the existence of
functions F and E such that ≿ can be represented by

U(µa ⊕ (1 − µ)b) = F(a, µ) + E(b, µ) (36)

Commutativity of the mixture set guarantees that we can redefine E and
F such that E(b, µ) = F(b, 1 − µ). To see this, note that from U(µa ⊕
(1 − µ)b) = U((1 − µ)b ⊕ µa) follows that F(b, 1 − µ) + E(a, 1 − µ) =
F(a, µ)+ E(b, µ). Since this holds for all a, E(b, µ) = F(b, 1−µ)+ E(a∗, 1−
µ) − F(a∗, µ) for some arbitrarily chosen a∗. Thus, E(b, µ) = F(b, 1 −
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µ) + f (µ) where f (µ) ≡ E(a∗, 1 − µ) − F(a∗, µ). Substituting in the
original representation, U(µa ⊕ (1 − µ)b) = F(a, µ) + F(b, 1 − µ) + f (µ).

Redefining F̂(a, µ) = F(a, µ) +

{
f (µ)/2 µ < 1/2
f (1 − µ)/2 µ ≥ 1/2.

, it follows that

U(µa ⊕ (1 − µ)b) = F̂(a, µ) + F̂(b, 1 − µ).

Lemma 4. F(a, µ) = A(µ)U(a) + B(µ) for all µ and all a ∈ S.

Proof. For fixed µ, F(a, µ) is a monotone transformation of U:

F(a, µ) ≥ F(b, µ) (37)
⇔ F(a, µ) + F(c, 1 − µ) ≥ F(b, µ) + F(c, 1 − µ) (38)
⇔ µa ⊕ (1 − µ)c ≿ µb ⊕ (1 − µ)c (39)
⇔ a ≿ b (40)
⇔ U(a) ≥ U(b) (41)

Therefore, we can write F(a, µ) = G(U(a), µ). We obtain from Associativ-
ity:

U(µa ⊕ (1 − µ)[λb ⊕ (1 − λ)c]) (42)
=G(U(a), µ) + G(G(U(b), λ) + G(U(c), 1 − λ), 1 − µ) (43)

=G(U(b), (1 − µ)λ) + G(G(U(a),
µ

1 − (1 − µ)λ
) + G(U(c),

(1 − µ)(1 − λ)

1 − (1 − µ)λ
), 1 − (1 − µ)λ)

(44)

=U((1 − µ)λb ⊕ (1 − (1 − µ)λ)[
µ

1 − (1 − µ)λ
a ⊕ (1 − λ)

(1 − µ)(1 − λ)

1 − (1 − µ)λ
c])

(45)

Noting that we have two continuous additive representations over S× S

(specifically here the elements a and b), by the uniqueness of additive
representations, we have that G(·, 1 − µ) in (43) is positively affine in its
first argument. Since b, c and µ, λ are arbitrary, this holds for all utility
levels. Therefore G(U(a), µ) = A(µ)U(a) + B(µ) for all a, b ∈ S and
µ ∈ [0, 1].

Lemma 5. A(µ) = µr, r ∈ R++.
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Proof. We define H(µ) = H(1−µ) = B(µ)+ B(1−µ). Using Associativity,
we can derive that

A(λ) [A(µ)U(a) + A(1 − µ)U(b) + H(µ)] + A(1 − λ)U(c) + H(λ)

(46)

=A(λµ)U(a) + H(λµ)

+ A(1 − λµ)

[
A
(

λ(1 − µ)

1 − λµ

)
U(b) + A

(
1 − λ

1 − λµ

)
U(c) + H

(
λ(1 − µ)

1 − λµ

)]
(47)

Consider a substitution a′ for a under which the above condition needs to
still hold. If ∆U = U(a)− U(a′), then it follows that

A(λ)A(µ)∆U = A(λµ)∆U (48)

and therefore A is multiplicative. Using Cauchy’s functional equation it is
straightforward to derive that A(µ) = µr, r ∈ R. By Axiom 3, r > 0.

We now finish the proof. We obtain

λrH(µ) + H(λ) = (1 − λµ)r
[

H
(

λ(1 − µ)

1 − λµ

)]
+ H(λµ) (49)

and substitute: λ = 1 − x and λµ = y. Using H(x) = H(1 − x) we obtain:

(1 − x)rH
(

y
1 − x

)
+ H(x) = (1 − y)rH

(
x

1 − y

)
+ H(y) (50)

with two types of solutions (Ebanks et al., 1987):

A(µ) = µ; H(µ) = −(µ ln µ + (1 − µ) ln(1 − µ))q + s (51)
A(µ) = µr; H(µ) = −(µr + (1 − µ)r − 1)q + s (52)

where q, s ∈ R. From Axiom 2 and Connectedness, we also have that
in both representations s = 0. We have therefore obtained the desired
representation:

U(µa ⊕ (1 − µ)b) =µrU(a) + (1 − µ)rU(b) + q · Hr(µ) (53)

with Hr(µ) =

{
−µ ln µ − (1 − µ) ln(1 − µ), r = 1
−µr − (1 − µ)r + 1, r ̸= 1

(54)

Regarding uniqueness, note that if preferences are nontrivial, then we im-
mediately have an additively separable preference U(µx ⊕ (1 − µ)y) over
a continuum of x and y and thus U is unique up to affine transformations.
The uniqueness properties of r and q follow immediately.
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B Proof of Corollary 2

Proof. We prove sufficiency: The characterization of the Luce model
is standard. We fix some y ∈ X and define v(y) = 1 and v(x) =
ln p(x, {x, y})− ln 1 − p(x, {x, y}). It is straightforward to then show that
(25) holds.

We form an equivalence relation ≈ on C such that C ≈ D if and
only if there exists enumerations C = {x1, . . . , xn} and D = {y1, . . . , yn}
such that p(xi, C) = p(yi, D) for all i ∈ {1, . . . , n}. From Continuity of
Decision Times follows that if C ≈ D, then τ(C) = τ(D). Each element
of C/ ≈ can be represented by a finite tuple (µ1, . . . , µn) with ∑i µi =
1, µi ∈ (0, 1], and the convention that µi ≥ µi+1 for all i ∈ {0, . . . , n}.
Notice that this makes a statement such as C ∈ (µ1, . . . , µn) meaningful;
it means that the set C is an element of the equivalence class represented
by (µ1, . . . , µn). We endow the set C/ ≈ with an operation ⊕ such that
µ(µ1, . . . , µn)⊕ (1 − µ)(λ1, . . . , λk) is the tuple obtained from rearranging
(µµ1, . . . , µµn, (1 − µ)λ1, . . . , (1 − µ)λk) into descending order. We further
endow the mixture set ⟨C/ ≈,⊕,=⟩ with the weak order induced by τ:
a ≿ b if there exist C ∈ a and D ∈ b such that τ(C) ≥ τ(D). By Continuity
of Decision Times, indeed a ≿ b, C ∈ a and D ∈ b holds if and only if
τ(C) ≥ τ(D).

Notice that if C ∩ E = ∅, p(C, C ∪ E) = µ, C ∈ a, and E ∈ b, then
C ∪ E ∈ µC ⊕ (1 − µ)E. From Independence of Decision Times then
follows that the relation induced by τ on the procedural mixture set fulfills
Independence.

Continuity of ≿ follows straightforward from the fact that τ is continu-
ous in the choice probabilities.

By Theorem 1 there exists a representation U of ≿ on C/ ≈. Since U is
continuous and τ is continuous, there must exist a continuous monotone
transformation T such that if C ∈ b, then T ◦ τ(C) = U(b). Now let C ∩
D = ∅, C ∈ a, D ∈ b and µ = p(C, C ∪ D). Then T ◦ τ(C ∪ D) = U(µa ⊕
(1 − µ)b) = p(C, C ∪ D)rT ◦ τ(C) + p(D, C ∪ D)rT ◦ τ(D) + qHr(p(C, C ∪
D)). Since τ({x}) = τ({y}) for all x, y and U is unique up to affine
transformations, we can assume without loss of generality that U((1)) = 0,
i.e., T ◦ τ({x}) = 0. If this is the case, then by Positivity and Remark 2 it
is without loss of generality to assume q = 1.
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C Proof of Proposition 2

For notational convenience, we define a ≡ αd ⊕ (1 − α)d and b = βc ⊕
(1 − β)c, where c = γd ⊕ (1 − γ)d.

a ≻ (≺)d if and only if sgn(q1 −U1(d)(r1 − 1)) = sgn(q2 −U2(d)(r2 −
1)) > (<)0.

By the uniqueness properties of U, a ≿ b if and only if

sgn(q − U(d)(r − 1))Hr(α) ≥ sgn(q − U(d)(r − 1))((γr + (1 − γ)r)Hr(β) + Hr(γ))
(55)

Thus, a ≿1 b implies a ≿2 b and a ≻ b1 implies a ≻2 b if one of the
following is true: q1 − U1(d)(r1 − 1) = q2 − U2(d)(r2 − 1) = 0, q1 −
U1(d)(r1 − 1) > 0 < q2 − U2(d)(r2 − 1) and

Hr1(α) ≥ (>)(γr1 + (1 − γ)r1)Hr1(β) + Hr1(γ)

⇒ Hr2(α) ≥ (>)(γr2 + (1 − γ)r2)Hr2(β) + Hr2(γ) (56)

or q1 −U1(d)(r1 − 1) < 0 > q2 −U2(d)(r2 − 1) and (C) holds with opposite
inequalities.

Define the Rényi (1961) entropy Rr(α) = ln(αr + (1 − α)r)/(1 − r).
Notice that Rr(α) ≥ Rr(β) if and only if Hr(α) ≥ Hr(β) and Hr(α) ≥
(γr + (1 − γ)r)Hr(β) + Hr(γ) if and only if Rr(α) ≥ Rr(β) + Rr(γ). That
is, the Rényi (1961) and Tsallis (1988) entropy are order-equivalent.

Lemma 6. Suppose 0 ≤ r < s, α, β, γ ≤ 1/2, and

Rr(α) = Rr(β) + Rr(γ) (57)

then,

Rs(α) > Rs(β) + Rs(γ). (58)

Proof. It is straightforward to show that α ≥ β and α ≥ γ since for r > 0,
Rr(γ) ≥ 0. We substitute: x1 = αr−1, x2 = (1 − α)r−1, y1 = (βγ)r−1,
y2 = (β(1 − γ)), y3 = ((1 − β)γ)r−1, y4 = ((1 − β)(1 − γ))r−1, wij =

(xiyj)
1/(r−1) and exponentiate both sides to obtain that (58) is equivalent

to:

sgn(1 − s)∑
ij

wij(xt
i − yt

j) > 0 (59)
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where t = (s − 1)/(r − 1).
Note that the vector y with weights (w11 + w21, . . . , w14 + w24) is a

mean-preserving spread of the vector x with weights (w11 + . . .+w14, w21 +
. . . + w24) since by (57), we have that

∑
ij

wij(xi − yj) = 0 (60)

Since y is a mean-preserving spread of x, we have by the properties
of generalized means that Mt(w⃗, x⃗) ≡ (∑ij wijxt

i)
1/t > (∑ij wijyt

j)
1/t ≡

Mt(w⃗, y⃗) if t < 1 and the reverse inequality holds if t > 1. It follows that
∑ij wij(xt

i − yt
j) is negative if t > 1 or t < 0 and positive if 0 < t < 1. Since

0 < t < 1 holds if and only if s < 1, (59) holds.

The lemma establishes that if at some r we have that (α, β, γ) are such
that a ∼1 b, then at a higher r it must be the case that a ≻2 b. Since
irrespective of the choice of s the LHS of (58) is increasing in α ≤ 1 and
the RHS is increasing in β ≤ 1/2, γ ≤ 1/2, it follows that {(a, b) : a ≿1
b} ⊆ {(a, b) : a ≿2 b}

D Further Comparative Statics

The comparative statics of Section 4 focus with respect to the parameter q
of the representation on the property whether U(a)(r − 1)− q ⋛ 0. The
present section provides additional results that require the existence of
nontrivial preference on a set of consequences, i.e. elements of S that cannot
be written in the form µa ⊕ (1 − µ)b with µ ∈ (0, 1). Let X be a set
of consequences. The following definitions are the standard definitions
of certainty equivalents and comparative risk aversion for mixture sets
adjusted to the procedural mixture setting.

Definition 17 (Certainty Equivalent). The certainty equivalent c = ce(αx ⊕
(1 − α)y) ∈ X of a procedural mixture of outcomes x and y is an outcome
that fulfills αx ⊕ (1 − α)y ∼ αc ⊕ (1 − α)c.

Definition 18 (Comparative Risk Aversion). ≿1 is at least as risk averse as
≿2 if for all α ∈ (0, 1) and all x, y, z ∈ X, we have that

αx ⊕ (1 − α)y ≿1αz ⊕ (1 − α)z (61)
⇒ αx ⊕ (1 − α)y ≿2αz ⊕ (1 − α)z (62)
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Provided with our adjusted definitions, we can prove the following
standard result for decisions under risk which extends to the procedural
case:

Proposition 3. Let ≿1 and ≿2 be mixture entropy values with representations
U1 and U2 and parameters r1, q1 and r2, q2, respectively. Let U1(X) and U2(X)
be convex sets. Suppose there exist some x, y ∈ X such that x ≻1 y. Then the
following statements are equivalent.

1. ≿1 is at least as risk averse as ≿2.

2. The restriction of U1 to X is a concave monotone transformation of U2 and
r1 = r2.

Proof. ⇐ is trivial, we prove ⇒: It is straightforward to show that for all
z, w ∈ X, z ≻1 w if and only if z ≻2 w. Since Hr(1) = 0 and ≿1 and ≿2
are continuous, it follows that utilities over outcomes must be continuous
monotone transformations of another, i.e., U1 = T ◦ U2 when restricted to
X.

Since the values of outcomes are a convex set, for every x, y ∈ X such
that x ≻2 y we can find z such that z = ce1(1/2x ⊕ 1/2y). Notice that
by the definition of a certainty equivalent we have U1(x)/2 + U1(y)/2 =
U1(z). If T is not concave, then for some such x and y, U2(x) + U2(y) =
T−1(U1(x))/2 + T−1(U1(y))/2 < T−1(U1(z)) = U2(z). But then 1/2x ⊕
1/2y ≿1 1/2z but 1/2x ⊕ 1/2y ≺2 1/2z ⊕ 1/2z, contradicting that ≿1 is
at least as risk averse as ≿2. We have thus established that T is concave.

Notice now that if r1 ̸= r2, then p1(α) ≡ αr1
αr1+(1−α)r1 ̸= αr2

αr2+(1−α)r2 ≡
p2(α). Without loss of generality, assume that p1(α) ≥ p2(α) for α ≥
1/2. Since T is monotone and continuous, it is differentiable almost
everywhere. Without loss of generality, assume T is differentiable at U2(x)
and U2(x) = U1(x) and ∂T(U2(x))/∂U = 1. Then we can find outcomes
x′ ≻ x ≻ x′′ such that p1(α)T(U2(x′)) + (1 − p1(α))T(U2(x′′)) > U2(x) >
p2(α)U2(x′) + (1 − p2(α))U2(x′′) contradicting that ≿1 is at least as risk
averse as ≿2.

Mixture entropy values which are equally risk averse can be compared
by how much the value of consequences is compared to the value of
mixing.

38



Definition 19 (Comparative Consequentialism). ≿2 is at least as conse-
quentialist than ≿1 if for all α ∈ (0, 1) and all x, y ∈ X, we have that

αx ⊕ (1 − α)x ≿2y (63)
⇒ αx ⊕ (1 − α)x ≿1y (64)

Proposition 4. Let ≿1 and ≿2 be equally risk averse mixture entropy values
with representations U1 and U2 and parameters r1, q1 and r2, q2, respectively.
Let U1(X) and U2(X) be convex sets. Suppose there exist some x, y ∈ X such
that x ≻1 y. Then the following statements are equivalent.

1. ≿2 is at least as consequentialist as ≿1.

2. There exist s ∈ R>0 and t ∈ R such that U2(x) = sU1(x) + t for all
x ∈ X and sq1 + t ≥ q2.

Proof. ⇐ is trivial, we prove ⇒: If ≿1 and ≿2 are equally risk averse, then
r1 = r2 = r and U1 is an affine transformation of U2 on outcomes. Assume
for the moment that U1 = U2 on outcomes. Notice that since Hr(α) ≥ 0
for all r and all α, (63) holds if and only if q1 ≥ q2. Since U2 may be an
affine transformation of U1 on outcomes, by the uniqueness properties of
U, the desired result follows.

This provides a link between the parameters of our representation and
the intensity of the value of mixing relative to the value of consequences.
Notice that this comparison is only meaningful when r1 = r2 and the
value of consequences are cardinally comparable.

E Proof of Theorem 2

Proof. The intuition for the result is simply that similar to a procedural
mixture set, a mixture set in which Independence only applies to disjoint
mixtures allows for a ∼∗ b and µa ⊕ (1 − µ)b ̸∼ µa ⊕ (1 − µ)a = a (since a
and a do not have disjoint support). The key difficulty is that the Disjoint
Independence axiom might not apply to sufficiently many elements of the
mixture set to restrict preferences to the desired representation.8

To prove the result, we first extend ≿∗ from ∆X to a set ∆X∞ which is
a mixture set generated from finite mixtures of countably many copies of

8For example, if there are only two outcomes, Disjoint Independence does not restrict
preferences.
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X. The resulting relation is additively separable across the different copies
of X. ∆X∞ contains a subset that is isomorphic to a procedural mixture
set and on which ≿∗ fulfills the vNM axioms. We thus have by Theorem 1

the desired representation on the procedural mixture set. Because disjoint
mixtures in X coincide with procedural mixtures in the procedural mixture
set, the utility representation on ∆X fulfills (23). The details of these steps
follow below.

Let X∞ = ⊔∞
i=0X be the disjoint union of countably many copies of

X. xk
i ∈ X∞ refers to the kth copy of xi ∈ X. Let ∆X∞ be the mixture

set generated from X∞. A generic element of ∆X∞ can therefore be
represented by m = {(xk

i , µk
i ), . . . , (xl

j, µl
j)} such that ∑i,k µk

i = 1. Note that
M ⊂ ∆X∞.

Let J be a partition of the support such that there are three elements
that each contain an essential pair of outcomes. By standard results
(Wakker, 1989, e.g., ), our axioms9 together with the existence of three
essential pairs of outcomes with mutually disjoint support guarantees that
there exists an additive representation U(m) = ∑J u((x1

i , µ1
i )i∈J) on ∆X

such that each component is normalized to zero if ∑i∈J µ1
i = 0. We can

uniquely extend the relation ≿∗ on M to ∆X∞ by summation of the utilities
obtaining a utility representation unique up to affine transformations of
the form ∑k ∑J∈J u((xk

i , µk
i )i∈J).

Let P be the closure of X under an operator ⊕, i.e., the minimal set
such that X ⊂ P and for all p, q ∈ P and all µ ∈ [0, 1], we have that
µp ⊕ (1 − µ)q ∈ P. Similarly, let ≈ be the minimal relation such that the
procedural mixture axioms are fulfilled. Notice that the quotient set P/ ≈
is also a procedural mixture set with = being the equivalence relation.

A generic element of P/ ≈ can be represented by a finite set {(x1, µ1), . . . , (xnµn)}
where all xi ∈ X with xi = xj permitted also for i ̸= j. Thus, there is a
natural mapping from P/ ≈ into ∆X∞ which we denote ϕ : P/ ≈→ ∆X∞.

Let ≿ be defined by p ≿ q if ϕ(p) ≿∗ ϕ(q). It is straightforward to see
that ≿ fulfills Weak Order and Continuity. Independence follows from
the fact that ≿∗ has an additively separable representation across different
copies of X contained in X∞ and fulfills Disjoint Independence.

It follows that ≿∗ on P/ ≈ has an entropy adjusted expected utility
representation V : P/ ≈→ R. Notice that on ϕ(P/ ≈) ⊂ ∆X∞ we have that
V ◦ ϕ−1 is additively separable across the partition of indexes J. It follows

9Disjoint Independence implies preference separability across disjoint subsets of the
support. Continuity implies topological connectedness of each dimension.
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that V ◦ ϕ−1 is an affine transformation of U. The desired functional form
of disjoint mixtures when U is restricted to ∆X follows.

F Proof of Corollary 3

Proof. (Sketch)
Given Theorem 2, the result is quite straightforward and we only sketch

the main ideas of the proof.
First, we show that p is a stochastic choice function following the Luce

model when restricted to choices with disjoint support. We fix some
y, x ∈ X that are disjoint from all other alternatives, and define for all m,
z ∈ X− {y}:

v(y, m(y)) = ln
p(y, {x, y}, m)/p(x, {x, y}, m)

p(y, {x, y}, m0)/p(x, {x, y}, m0)
(65)

v(z, m(z)) = ln
p(z, {y, z}, m)

p(y, {y, z}, m)
v(y, m(y)) (66)

where m0 is such that m0(y) = 0 and m0(z) = m(z) for all z ∈ X− {y}. By
Positivity and Restricted IIA, v is well defined; Positivity guarantees that
all probabilities are nonzero and Restricted IIA guarantees that v(y, m(y))
does not depend on m(x) and v(z, m(z)) does not depend on m(y). Using
Restricted IIA, it is then straightforward to show (by adding y) that if
D ∈ C contains only elements disjoint from one another, then the choice
probabilities take the desired form for all alternatives in D.

Second, we show that varying m in p(. . . , m) generates a mixture
set. By Continuity, τ is a continuous function of the choice probabilities.
Monotonicity in Payoffs and Restricted IIA guarantee that the probabilities
form a convex set if all alternatives are disjoint. Since every alternative can
appear at most once in a decision process and only the choice probabilities
matter, every decision process (C, m) can be represented by a probability
measure pC,m over the elements of C. Thus, the set C× RX equipped
with the relation ≿ induced by τ is isomorphic to a mixture set M. We
endow M with a support supp : M → 2A such that supp(pC,m) = {A ∈
A|A ∩ C ̸= ∅}.

Third, it is straightforward to show that the weak order induced by τ

fulfills Continuity and Disjoint Independence given our axioms. It follows
that for any set D of mutually disjoint elements the desired representation
holds but it may in principle be the case that two sets D and D′ have
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mixture entropy representations that are incompatible with another, e.g.,
have different parameters r and r′. However, it is obvious that if C ⊆ D,
then the representation for D is also valid for C. Given the six alternatives
{d1, . . . , d6} that do not share attributes with any other alternative, we
can fix a unique mixture entropy representation and uniquely extend it to
{d1, . . . , d6} ∪ D′.
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