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Abstract

Behind the veil of ignorance, a policy maker ranks combinations of game

forms and information about how players interact within the game forms.

The paper presents axioms on the preferences of the policy maker that

are necessary and sufficient for the policy maker’s preferences to be repre-

sented by the sum of an expected valuation and a freedom measure. The

freedom measure is the mutual information between players’ strategies

and the players’ outcomes of the game, capturing the degree to which

players control their outcomes. The measure extends several measures

from the opportunity set based freedom literature to situations where

agents interact. This allows freedom to be measured in general economic

models and thus derive policy recommendations based on the freedom

instead of the welfare of agents. To illustrate the measure and axioms,

applications to civil liberties and optimal taxation are provided.
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1 Introduction

This paper axiomatically analyzes a decision problem of institutional choice in
which a policy maker only has information about how individuals will interact
within a game form but does not know unobservable information. In such
settings, utilitarianism is infeasible as it relies on knowledge of utilities which
are not observable. This setting is plausible for institutions that last far into the
future and thus utilities are hard to estimate, institutions that have nonrational
agents without well-defined utility functions, and institutions in which the
procedure by which an outcome is implemented is intrinsically valuable.

We call a game form endowed with the policy maker’s information about
how players will interact a process. The information about players’ strategies
allows us to establish how well their strategies correlate with outcomes and how
quantitatively diverse the choices are. The game form allows us to establish that
these correlations are indeed causal. Together, the two pieces of information
allow the decision maker to account for the control players have over the
outcomes.

The policy maker forms preferences over processes in compliance with the
following axioms. The Rationality axiom imposes completeness and transitivity
of the preference relation. Continuity and Outcome Equivalence ensure that
similar processes are similarly ranked. Lottery Independence requires the
policy maker to obey the von Neumann-Morgenstern independence axiom for
pure lotteries over outcomes.

The central axioms are Strategy Independence and Subprocess Monotonicity.
Strategy Independence deals with situations in which the policy maker learns
that a choice between strategies was actually made by nature. Thus, instead
of a player making a choice between strategies, nature randomly chooses the
strategy for the player. The axiom requires that ceteris paribus, the change of
value due to this choice removal is independent of the other choices being made
by any player. For example, if the policy maker learns that aversion to bitter
vegetables is determined genetically (Wooding et al., 2004), then the resulting
change in the policy maker’s preference is independent of the policy maker’s
preference change resulting from learning that smoking behavior is genetically
determined (Erzurumluoglu et al., 2019). Precisely, the policy maker may not
prefer that vegetable choices are determined by nature if and only if smoking
choices are also determined by nature. Instead, the policy maker needs to make
independent judgments about the desirability of the agent (rather than nature)
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being in control of strategic choices.
Subprocess Monotonicity requires the policy maker’s preference for a pro-

cess to be increasing in the preference of its subprocesses. A subprocess is
the process obtained from conditioning the probability measures on behavior
to a subgame. Monotonicity in the value of a subprocess is only required to
hold when the subprocess reaches distinct outcomes from the remainder of the
game. Consider as a simple example the process in which a single player gets
to choose between smoking and not smoking. According to the information
of the policy maker, both smoking and not smoking are equally likely to be
chosen. This process has two trivial subprocesses, one in which the player
smokes with certainty and one in which the player does not smoke with cer-
tainty. Suppose the policy maker prefers to dictatorially assign not smoking
to dictatorially assigning the player to smoke. Then subprocess monotonicity
without the requirement of disjoint outcomes would imply that the substitution
of the subprocess in which the player smokes with certainty by a subprocess
in which the player does not smoke with certainty would improve the process.
However, the resulting process would be the trivial choice between not smoking
and not smoking. When we substitute a subprocess by another subprocess
it may therefore occur that meaningful choices are removed if some of the
outcomes of the subprocess overlap with outcomes of the remainder of the
process. Therefore, we require Subprocess Monotonicity only to hold if the
outcomes of the subprocess are disjoint from the remainder of the game.

We obtain a representation theorem according to which the policy maker’s
preferences are additively separable across players. For each player, the policy
maker’s evaluation of the process consists of the sum of two components. The
first component is an expectation across the valuation of individual outcomes
that can be interpreted as the policy maker’s perceived instrumental value of
the process.1 The second component is the mutual information between the
player’s strategies and outcomes. This component is interpreted as a freedom
measure; it measures the degree to which players exercise control over their
outcomes. Under the special case of perfect control, the mutual information
becomes equal to the Shannon entropy of the outcomes, a freedom of choice
measure suggested by Suppes (1996). The policy criterion has several desirable
properties. First, by allowing for interactions between players, the policy maker

1Since the policy maker has no information about player’s utilities beyond the behavior, this
expectation is the policy maker’s subjective evaluation of how desirable the outcomes are, not
the player’s.
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can have procedural preferences, e.g., preferences over who can influence what
outcome. Second, the criterion only depends on behavioral data and does not
depend on unobservable quantities such as utility. Third, no impositions are
made with respect to equilibrium concepts or the rationality of players in the
game. Indeed, the policy maker need not even know whether a decision maker
is rational.

The contribution to the freedom of choice literature2 is a solution to the
problem posed in Pattanaik (1994). Pattanaik (1994) showed that opportunity set
based measures of freedom of choice encounter problems when being applied to
situations in which agents interact. The difficulty arises because in situations in
which agents interact, opportunity sets from which agents can freely choose are
no longer clearly defined. The choice of one agent may influence the available
opportunities of another agent and vice versa. This problem has prevented
the literature to provide measures even for a simple exchange economy as
Pattanaik (1994) showed. Yet, it is exactly these cases when agents depend on
each other to achieve their goals, when they exhibit power over each other, or
when they are coerced by others that the measurement of freedom becomes
interesting. The lack of freedom measures for situations where agents interact
therefore creates an undesirable wedge between the normative analysis that
can be performed by economists and normative perceptions outside economics.

To show that the measure axiomatized in this paper effectively solves the
problem of measuring freedom when agents interact, we apply the measure
to two examples. The first example is a simplified model of racial discrimi-
nation on buses in Montgomery in the early 1950s. We analyze a game form
representing the interaction between a passenger and a driver. Using historical
accounts, we can inform a policy maker about how the passengers and drivers
interacted. According to the law, no passenger had to yield their seat to another
passenger. However, black passengers were frequently required to yield their
seats for white passengers. In case they refused to yield their seat, they were
arrested and economically sanctioned. We show how this discrimination leads
to a reduction of freedom of choice. The example also shows why we include
the policy maker’s information about the strategies of the players; neither a
game form in which only the legal actions are included, nor a game form in
which all possible actions are included would correctly capture the degree of
freedom of choice of the players.

2Dowding and van Hees (2009) gives a survey of the literature. Appendix A presents
freedom of choice measures that relate to the measure developed here.
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The second example is a production economy, a similar problem to the one
posed by Pattanaik (1994). A production economy can be treated as a process
in which the consumers choose demand functions as fully contingent plans
that yield a final outcome, the allocation. In our model, the policy maker has
information about the reported demands of all players and the production
conditions. The information of the policy maker behind the veil of ignorance
is such that the players choose their demand functions in a non-strategic
manner which is the central property of competitive equilibria. Using the
model of a utility maximizing consumer, the uncertainty about demand can be
translated into uncertainty about a preference parameter without assuming the
policy maker’s knowledge of cardinally comparable utility functions. Further,
the policy maker is uncertain about consumers’ individual productivity and
aggregate shocks. Freedom is measured as the degree to which preferences
determine consumption and labor outcomes. The limitations to freedom are
given by individual’s variations in ability and shocks that reduce the causal
connection between demand functions and consumption outcomes. In this
model, we analyze how a policy maker optimally sets the tax progressivity to
maximize freedom.

The paper continues as follows. The Montgomery bus game as an example
of civil liberties is introduced in Section 2. Section 3 begins with an informal
description of the policy maker’s problem and then provides the game theoretic
framework in which the measure is developed. Section 4 axiomatizes the
measure. The application of the freedom measure to a production economy
and the problem of optimal income tax progression is given in Section 5.

2 Example: Civil Liberties

To clarify the various concepts used and defined in the following sections, we
employ an example of discrimination. The extensive game form3 is shown in
Figure 1. In the game player 1 decides how to get to work. She can choose to
walk, in which case she arrives with certainty at work, outcome z. Alternatively,
she can attempt to take the bus. In that case, the driver, player 2, decides
whether to drive past her or stop and accept her as a passenger. If player 1 is

3A similar game form is given in Mailath et al. (1993). The interpretation added in this paper
to the game form is a much simplified account of the segregation laws and discriminatory
practices of bus lines in Montgomery, Alabama up to 1956. For historical accounts, see Burns
(2012), Phibbs (2009), Theoharis (2015).
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rejected as a passenger, she has the choice of walking and arriving with a delay,
x, or cancel the trip, y. If player 1 does not get passed by the driver, she is at
one point during the ride requested to give up her seat to a white passenger.
She can then yield her seat to the other passenger and stand for the rest of the
ride, u. Alternatively, she can insist on her right to sit, in which case player 2

can either act lawfully and player 1 gets to sit during the ride, v, or player 2 can
call the police and in the aftermath player 1 gets arrested and loses her job, w.

1

z

walk bus

2

stop drive

1

re f use

u

yield

1

x

walk

y

cancel

2

v

law f ul

w

police

Figure 1: Montgomery Bus Extensive Game Form

A particular instance of the Montgomery bus game was played on December
1, 1955 between Rosa Parks and and James Blake, famously ending in outcome
w, which led ultimately to the Montgomery bus boycott and a change in the
segregation rules. From an opportunity based freedom of choice perspective in
addition to her chosen action “refuse”, Rosa Parks clearly also had the freedom
to choose “yield”. This stands in contrast to our intuition that in general
passengers did not have much freedom when they interacted in this institution.
The reason for this is that only a handful of courageous women4 dared to take
the action “refuse” and suffered hardship as a consequence of taking this action.
Based on historical accounts of 1950s Montgomery, Alabama, we know that
bus drivers at times arbitrarily rejected black passengers and black passengers
would frequently be required to yield their seat for white passengers. White
passengers on the other hand received preferential treatment by the bus drivers.
Therefore, the frequency with which actions are taken by various individuals

4Claudette Colvin, Aurelia Browder, Susie McDonald, Mary Louise Smith, Jeanetta Reese,
and Rosa Parks.

5



in the same role within an institution, can be informative about the freedom an
institution offers.

We do not directly address the usual question in the freedom of choice
literature of how much freedom a particular individual has in a particular choice
situation. Instead, we measure how much freedom of choice an institution
offers to the different roles individuals take within that institution. Thus, our
measure can give an answer to how much freedom of choice passengers and
bus drivers had in 1950’s Montgomery but this may only be indicative of the
freedom of choice Rosa Parks and James Blake had in the specific instance when
they interacted in this institutional setting. Therefore, a player in the game
form is best understood as a role within the institution and not as a particular
individual.

One repugnant aspect about the institution represented by the Montgomery
bus game is that whether player 1 ends up in outcome v, sitting on the bus,
or outcome w, sitting in prison, causally depends on player 1’s race and not
their own strategies. We can model this via an additional move by nature
determining the race of the player. If the policy maker dislikes discrimina-
tion, then uncertainty about strategies and uncertainty about moves by nature
must be valued differently. The policy maker therefore has source-dependent
preferences (Chew & Sagi, 2008) about uncertainty with respect to strategic
uncertainty and risk generated by nature. To ensure that causal relations be-
tween strategies and outcomes are unambiguous, we require strategies to be
uncorrelated across all players, including nature. The structure of the game
form ensures that the measured correlation between strategies and outcomes
indeed reflects the control a player has over the outcomes.

Thus, we can measure the degree to which players’ strategies cause outcomes
to occur by the degree to which the conditional probability of an outcome
changes in response to a change in strategy. If player 2 with some probability
chooses the pure strategy “police” and with some probability the pure strategy
“lawful” irrespective of nature’s move determining the race, then the conditional
probability of outcomes v and w given strategies will be very different from
their unconditional probability. This can more generally be measured using the
mutual information between strategies and outcomes.
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3 The Model

A policy maker faces a decision problem in which she decides behind a veil
of ignorance between establishing different institutions. The institutions are
modeled as game forms between a set of players over lotteries of social outcomes.
Players in the game form are understood as representing roles within an
institution and behind the veil of ignorance their identity is uncertain. The
policy maker has information about how players will interact in the game
form. More precisely, the policy maker is given a probability measure over
the (possibly mixed) strategies of each player.5 The combination of a game
form with the policy maker’s information about strategies is called a process.
Processes can differ on the game form, contain identical game forms but
different information about strategies, or differ in both respects. The policy
maker forms preferences over processes. We impose axioms on the preferences
of the policy maker and prove a representation theorem. The representation
of the policy maker’s preferences consists of a sum across players of the
sum of an expectation across outcomes and a measure of how informative
strategies are about outcomes. We interpret the first component of the sum
as an instrumental value of the process; it contains the policy maker’s own
preferences for implementing specific outcomes. The second component of
the sum is interpreted as a freedom measure, it measures the extent to which
players exercise control over their outcomes and how many outcomes they
control.

The central idea of the axiomatization is that nature-driven uncertainty is
valued differently from agent-driven uncertainty by the policy maker. For pure
lotteries in which no player is influential, the policy maker obeys the classical
independence axiom. When players are influential, uncertainty about their
strategies is not commensurable with uncertainty from lotteries. The reason is
that strategies allow players to express their individual likes and dislikes for
various outcomes. In our example, it is plausible that a policy maker prefers ex
ante that the outcome whether player 1 goes to jail or not should be correlated
with the strategies of player 1 but not with strategies of player 2. To account for
this, each social outcome is a combination of individual outcomes of the players.

5Since the opportunities of a player in a game depend on the probabilities with which the
other players choose certain actions, also an opportunity oriented approach would require
information about all player’s strategies to evaluate the freedom of choice offered by the game
to the players.

7



3.1 Notation

f , g, h denote generic functions f : x 7→ f [x]. f |Z denotes the restriction
of f : X → Y to the subset Z ⊆ X of the domain. If f : X → Y, then
f [Z] = {y ∈ Y : ∃z ∈ Z : y = f [z]} is the image of the function of the set
Z ⊆ X. When a set X is understood as a subset of Y, then XC = Y\X denotes
the complement.

If S is a topological space, then ∆S denotes the finite support probability
measures over the Borel sigma algebra of S. The support of ν ∈ ∆S is denoted
by supp[ν]. In case of a finite set S, we assume the discrete topology and
therefore ν ∈ ∆S means the domain of ν is the power set 2S. We will frequently
simplify notation by writing ν[s] instead of ν[{s}] for singletons. If s ∈ S, then
1s ∈ ∆S fulfills 1s[s] = 1. If ν ∈ ∆S, S′ ⊂ S, and ν[S′] > 0, then the conditional
probability measure denoted by ν|S′ fulfills (ν|S′) [S′′] · ν[S′] = ν[S′′] for S′′ ⊆ S′.

For any two probability measures ν ∈ ∆S, ν′ ∈ ∆S′, we can assign a product
measure ν ⊗ ν′ ∈ ∆(S× S′), such that (ν ⊗ ν′)[s, s′] = ν[s]ν′[s′]. For finitely
many products of a set of measures, D = {ν1, ..., νn}, we can write

⊗
ν∈D ν =

ν1 ⊗ ...⊗ νn.
For any two probability measures over the same set ν, ν′ ∈ ∆S, we can

define the mixture of the two probability measures αν⊕ (1− α)ν′ ∈ ∆S as the
probability measure that fulfills for all s ∈ S: αν⊕ (1− α)ν′[s] = αν[s] + (1−
α)ν′[s]. For a probability measure α ∈ ∆S′ and an injective function f : S′ → ∆S,
we define

⊕
s′

α[s′] f [s′] =α[s′1] f [s′1]⊕ (1− α[s′1])
(

α[s′2]
1− α[s′1]

f [s′2]⊕ . . .
)

=α[s′1] f [s′1]⊕ α[s′2] f [s′2]⊕ α[s′3] f [s′3]⊕ . . . (1)

In other words, f and α can together be interpreted as a two stage probability
measure over S and the measure

⊕
s′ α[s′] f [s′] is its reduction to a single stage.

3.2 Game Forms and Processes

Let N be a set of players. We assume there exists some universal set of social
outcomes O. Outcomes are denoted by lowercase letters from the end of the
alphabet, x, y, z. For each player i, there exists a set Oi of individual outcomes
xi, . . . that are a partition of O. If the policy maker is of the opinion that the
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difference in outcomes x and y are irrelevant6 for player i, then the individual
outcome of player i is the same in both outcomes, i.e., ∃xi ∈ Oi : x, y ∈ xi. For
simplicity, we assume that all combinations of individual outcomes are possible,
i.e., for all (x1, . . . , xn) ∈ ∏n

i=1 Oi, we have that
⋂

i∈N xi 6= ∅.
We define strategic game forms as follows.

Definition 1 (Strategic Game Form). A strategic game form G is a tuple (N,A, o)
where

— N = {1, ..., n} is a finite set of players.

— A = ∏i∈N Ai is the set of action profiles.

— Ai is the finite set of actions of player i.

— o : A→ ∆O is the outcome function specifying for each action profile a
lottery.

The set of all strategic games in reduced form, i.e., without any strategically
equivalent actions7 of any player is denoted by G[O].

Lowercase letters from the beginning of the alphabet a, b, c, . . . ∈ A always
denote action profiles, action profiles with a subsript, ai ∈ Ai denote the action
taken by player i. To avoid the awkward notation (a1, ..., ai−1, ai, ai+1, ..., an)

where aj ∈ Aj, we employ the notation (ai, a−i) for such tuples. Each action
profile results in a lottery over outcomes. In the following, G always denotes
an arbitrary reduced game form with the same set of players N.

Example. The reduced normal game form of the Montgomery bus extensive
game form is shown in Table 1. Each action is now spelled out as a fully
contingent plan. We note that in this game there is no uncertainty about the
outcomes after the players’ moves. Therefore, for example o[a1

1, a1
2] = 1u. We

must also determine what the relevant distinctions in outcomes are. Based on
the above interpretation, we may for example be concerned about the freedom
of choice of player 1 about whether and how she commutes to work. This means
that u, v, etc., will generally be considered normatively distinct outcomes for
player 1 by the policy maker and therefore belong to different elements of the
partition O1. Some policy maker perhaps considers the delay from being rejected

6Ahlert (2010) instead employs a perception function that distinguishes social states accord-
ing to whether individuals perceive the states to be different. Instead of making this a question
of perception, we make this a normative issue to be determined by the policy maker.

7For a precise definition, see Appendix B.
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stop, lawful stop, police drive
a1

2 a2
2 a3

2
bus, yield, walk a1

1 u u x
bus, yield, cancel a2

1 u u y
bus, refuse, walk a3

1 v w x
bus, refuse, cancel a4

1 v w y
walk a5

1 z z z

Table 1: Montgomery Bus Game Form

from riding the bus negligible and considers the outcomes z and x equivalent
for player 1. Another policy maker may find that the driver’s outcomes are
all identical O2 = {{u, v, w, x, y, z}}. In any case, these normatively imposed
distinctions are assumed to be exogeneously given.8 End of example.

The information contained in a game form is not always sufficient to make
moral judgments. For example, a utilitarian policy maker would in addition
like to know the utilities and the expected behavior of individuals. We will
not permit utility information behind the veil of ignorance but information
about player’s behavior only. We define the mixed strategies µi of player i as
probability measure over the actions µi ∈ ∆Ai and strategy profiles as µ =

(µi)i∈N. With some abuse of notation, we will also use µ as the corresponding
product measure over action profiles.

Behind the veil of ignorance, the policy maker is uncertain about the choice
of strategies of the player. This uncertainty is reflected in the behavior of the
player. We therefore define the information of the policy maker as probabilistic
beliefs.

Definition 2 (Information about Strategies). The information of the policy
maker about the strategies of player i, θi ∈ ∆∆Ai is a finite support probability
measure over the strategies, ∆Ai. The policy maker’s information about strategy
profiles is given by θ = (

⊗
i∈N θi) ∈ ∏i∈N ∆∆Ai.

It is noteworthy that the information about strategies exhibits independence
across players. This implies that the description of the interaction provided
by the game form is comprehensive in the following sense. According to the
information of the policy maker, the players have no way of correlating their

8As already argued by Sugden (2003), any measure of freedom of choice ultimately depends
on the way the outcome space is partitioned. We will see in Section 5 how different partitions
of the outcome space yield different policy objectives.

10



actions in any way that is not described by the game form. As we are interested
in process value, this is important as the following example shows.

Example. Suppose in the Montgomery bus game form we observe that according
to the information of the policy maker, player 1 plays the pure strategy a5

1 if and
only if player 2 plays a2

2 and player 1 plays a3
1 if and only if player 2 plays a1

2.
In this case, it seems that player 1 has perfect control over whether she walks,
z, or sits on the bus, v. Similarly, player 2 seems to have perfect control over
these two outcomes as well. This cannot be the whole story of the interaction
between the two players, however. To coordinate their actions, they must either
rely on a signal from nature (let’s say weather) or one player is able to condition
on the other’s strategy. The policy maker may want to judge the two situations
differently. However, only knowing that the actions are correlated but not the
reason for the correlation makes it impossible to determine which of the two
scenarios is correct.

Consider the first scenario: on days with hot weather, player 1 walks and
the driver is in a foul mood and would discriminate if player 1 tries to enter the
bus. On days with cool weather, player 1 takes the bus and player 2 is in a good
mood and does not discriminate. This scenario would be properly modeled
by a process mixture (introduced below) in which with some probability the
players interact in a process modeling the good weather interaction and with
the remaining probability the bad weather interaction. In this process mixture,
which is itself a process, the strategies would be uncorrelated.9

Alternatively, consider a second scenario: player 1 observes whether today’s
driver is known to discriminate and avoids taking the bus. If player 2 observes
that today’s driver is known not to discriminate, she takes the bus. This process
would be properly modeled by accounting for the fact that player 2 indeed
plays a pure strategy that is a contingent plan depending on the identity of
the driver. In a process that accounts for this, the strategies would again be
uncorrelated.

We therefore impose that the probability measure over strategy profiles
is a product measure of the probability measures over individual strategies.
By assuming this, we can identify the causal relations between each player’s
strategies and the outcomes since all correlations must be either due to moves

9Similarly, if the decision maker is uncertain about which equilibrium will be played in a
game, this is properly addressed by a process mixture across several processes, one for each
equilibrium. Also, correlated equilibria would need to be modeled by making the correlation
device explicit via process mixtures.
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by nature or from the modeled strategic interactions. End of example.

We now define the primitives over which the policy maker has preferences.
These primitives determine what the policy maker sees behind the veil of
ignorance. The policy maker forms preferences over processes from a set of
processes defined as follows.

Definition 3 (Set of Processes). The set of processes P is defined as

P = {(G, θ) : G = (N,A, o) ∈ G[O], θ ∈
n

∏
i=1

∆∆Ai}. (2)

Thus, processes are game forms endowed with information about strategies
and the set P contains all possible processes given the set of outcomes O.

Example. In the Montgomery Bus Game, it is quite plausible that a policy
maker’s evaluation will generally depend on how the individuals interact. If a
policy maker expects the driver to always reject the passenger and the passenger
always chooses to walk, then the policy maker may conclude that freedom of
choice for the passenger is lower than if the policy maker expects the driver to
stop for the passenger. Thus, the behavior of player 2 is important for evaluating
the freedom of choice for player 1. However, the behavior of player 1 is similarly
important. Suppose the driver sometimes stops and sometimes drives past. If
the threat of the driver rejecting the passenger is sufficiently severe such that
she always chooses to walk. Then we may also judge that freedom of choice is
low – this time not from the expectations about the driver’s behavior but from
the behavior of the passenger. End of example.

In the following, we define useful concepts related to processes. We intro-
duce the following notation for the probability measure over outcomes derived
from a process (G, θ):

ρG,θ =
⊕

µ

θ[µ]
⊕

a
µ[a]o[a] (3)

ρG,θ|µi =
⊕
µ−i

θ−i[µ−i]
⊕

ai∈Ai,a−i∈A−i

µi[ai]µ−i[a−i]o[ai, a−i] (4)

which are well-defined measures defined via mixtures of measures. The def-
inition of ρG,θ mixes first all probability measures of outcomes given action
profiles, o[a], with weight µ[a] into a conditional probability of outcomes given
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a profile µ. It then mixes all the thereby resulting measures given µ with the
weight θ[µ]. For an outcome x, ρG,θ[x] thus denotes the probability of how
likely it is that outcome x occurs in a game form G with information θ about
the strategies played by players. The definition of ρG,θ|µi proceeds in the same
manner but fixes player i’s strategy, µi.

Not all outcomes that are within a game form are reached with positive
probability. In a process (G, θ), the support of an action profile a ∈ A from the
perspective of i ∈ N is defined as:

suppi,(G,θ)[a] = {xi ∈ Oi : xi ∩ supp[o[a]] 6= ∅} (5)

We denote suppi[G, θ] = suppi,(G,θ)[
⋃

µ∈supp[θ] supp[µ]] as the support of the
process from the perspective of player i.

We now introduce a notion of equivalence of strategies that takes into
account the information θ of how players choose their strategies.

Definition 4 (Outcome Equivalent Strategies). Two strategies µi ≈G,θ µ′i of
player i are outcome equivalent in (G, θ) if ρG,θ|µi[oi] = ρG,θ|µ′i[oi] for all oi ∈ Oi.

Thus, two strategies are outcome equivalent for player i, if their conditional
probability over i’s individual outcomes is identical.

Example. In the Montgomery Bus Game, player 1’s mixed strategies µ1 =
1
21a1

1
⊕ 1

21a3
1

and µ′1 = 1
21a2

1
⊕ 1

21a4
1

are outcome equivalent irrespective of player
2’s behavior. Moreover, 1a1

1
≈G,θ 1a2

1
if player 2 plays a3

2 with zero probability
in (G, θ). Note that if O2 partitions the outcomes of the game into the trivial
partition O2 = {{u, v, w, x, y, z}}, then all strategies of player 2 are outcome
equivalent for player 2. End of example.

Definition 5 (Outcome Equivalent Processes). Two processes (G, θ), (G′, θ′) are
outcome equivalent for player i, (G, θ) ≈i (G′, θ′), if there exists a bijection
bi : (∆Ai)/≈G,θ → (∆A′i)/≈G′,θ′ , such that for all Mi ⊆ (∆Ai)/≈G,θ: θi[Mi] =

θ′i [bi[Mi]], and for all µi ∈Mi, µ′i ∈ bi[Mi], xi ∈ Oi:

ρG,θ|µi[xi] = ρG′,θ′ |µ′i[xi]. (6)

Two processes (G, θ), (G′, θ′) are outcome equivalent, (G, θ) ≈ (G′, θ′), if they
are outcome equivalent for all players.
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In other words, processes are outcome equivalent if the (equivalence classes
of) strategies with the same conditional probability over individual outcomes
can be matched such that their total probability according to θ, θ′ are identical.

Information is an important aspect in strategic interactions between indi-
viduals. Commonly, information sets and subgames are defined in extensive
form games. Mailath et al. (1993) show that information sets and subgames can
also be defined in reduced game forms in a corresponding manner. We repeat
their definitions in Appendix B. Based on the definition of subgames in game
forms we now define the corresponding notion of a subprocess of a process. If
a game has a subgame, then conditioning the probabilistic beliefs of the policy
maker over strategies to that subgame results in a subprocess.

Definition 6 (Subprocess). For a process (G, θ), let B = ∏i∈NBi be a normal
form subgame of G. Then (G, θ)|B = ((N,B, o|B), θ′) defined by

∀i ∈ N, µi ∈ ∆Ai : θ′i [µi|Bi] =
θi[µi]µi[Bi]

∑µ′i
θi[µ

′
i]µ
′
i[Bi]

(7)

is a subprocess of (G, θ) on B.

Example. Suppose player 1 plays either a mixed strategy involving actions
a5

1 and a1
1 or plays the pure strategy 1a5

1
according to the information of the

policy maker. If the policy maker wants to separately analyze the subgame
{a1

1, . . . , a4
1} × {a1

2, a2
2}, the policy maker has to take into account that the prob-

abilities of the two strategies change; the second strategy never reaches the
subgame and therefore the first strategy is played in the subprocess with cer-
tainty. Moreover, the mixed strategies must be conditioned on the subgame; in
the first strategy, a1

1 is played with certainty on the subgame. End of example.

Using the above definition of Outcome Equivalence, we can define what
it means that two processes (G, θ), (G, θ′) agree outside a subgame B ⊆ A.
Suppose for some b ∈ B,

o′′[a] =

o[a] a ∈ A\B

o[b] a ∈ B.
(8)

Then the two processes (G, θ), (G, θ′) agree outside the subgame B if ((N,A, o′′), θ)

≈ ((N,A, o′′), θ′). Therefore two processes agree outside a subgame B if making
all actions on this subgame equivalent yields two outcome equivalent processes.
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In some cases, we may want to capture the uncertainty the policy maker
faces about what process will arise from the policy. We therefore define mixtures
of processes as follows.

Definition 7 (Process Mixture). The mixture of two processes, (G, θ) and (G′, θ′),
is defined as α(G, θ)⊗ (1− α)(G′, θ′) = ((N,A′′, o′′), θ′′) with

A′′ =A×A′

A′′i =Ai ×A′i

o′′[a, a′] =αo[a]⊕ (1− α)o′[a′]

θ′′[µ⊗ µ′] =θ[µ]θ′[µ′]. (9)

The mixture weight α represents how likely the policy maker believes it
is that the process (G, θ) will be played. We can alternatively interpret this
as nature determining which process will be played after the players have
determined their strategies in each process independently.

Example. The policy maker may be informed by data that strategies are race-
dependent. According to the data, if player 1 is black, she plays the pure
strategy 1a1

1
with certainty, if she is white, 1a3

1
instead. Player 2 plays 1a1

2
with

certainty. Let the corresponding processes be (G, θ) and (G, θ′). Since behind
the veil of ignorance, race is determined by nature’s lottery according to some
proportion α, the process α(G, θ)⊗ (1− α)(G, θ′) represents the policy maker’s
beliefs of the overall process after receiving the information that strategies
are race dependent. The game form of this process lets both players choose
an action depending on the race of player 1. Player 1 chooses 1(a1

1,a3
1)

with
certainty. The correlation between the race of player 1 and the outcomes is
generated by nature which determines the outcomes with probability α as if
player 1 had chosen a1

1 and with probability 1− α as if player 2 had chosen
a3

1. End of example.

In the axiomatization, we will analyze changes in processes that involve
informing the policy maker that a strategic choice was actually determined by
nature. In some initial process, the policy maker is informed that some player
makes a choice between strategies. Now imagine informing the policy maker
with the exact same information, except that according to the new information,
the player did not choose among two strategies but instead a random process
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(nature) made this choice. We call the change from the initial to the latter
process a choice removal.

Definition 8 (Choice Removal). Suppose Mi ⊆ supp[θi] is a set of strategies of
player i. Then DMi

i (G, θ) randomizes the choice among these strategies.

DMi
i (G, θ) =

⊗
µ∈Mi

θ[µ]

θ[Mi]

(
G, θ−i ⊗

(
θ[Mi]1µ ⊕ (1− θ[Mi])θ|MC

i

))
. (10)

If all strategies of a player are randomized, we denote D
supp[θj]

j = Dj. The choice
removal for all players in set N′ ⊆ N is denoted by DN′ and D−N′ = DN\N′ .

We interpret the above notation as follows. The process inside the brackets
is the mixed belief of the policy maker whether a particular strategy µi ∈Mi is
being played or a strategy outside Mi is being chosen. The latter choice among
strategies is made with the same probabilities with which the strategies outside
Mi were chosen in (G, θ). Via nature’s randomization over processes, nature
determines which of these strategies µi ∈Mi is chosen.

Example. We continue the example of a process mixture. Suppose initially,
the policy maker has no data on race being the determining factor in the
strategic choice of player 1. Instead, the policy maker falsely believes that with
probability α, player 1 chooses 1a1

1
and with probability 1− α, player 1 chooses

1a3
1
. In this case, the policy maker attributes the choice therefore to player 1. Let

this process be denoted by (G, θ′′). Then Di(G, θ′′) = α(G, θ)⊗ (1− α)(G, θ′).
In other words, the difference between the process in which race determines
the choice of the player and the process in which the choice is of player 1’s own
volition is the choice removal operation. End of example.

Some game forms are effectively lotteries from the perspective of some play-
ers. Such players have no meaningful strategic choice and therefore removing
their strategic choice leaves an outcome equivalent process. We use this idea to
capture whether a player is influential or not.

Definition 9 (Influential Players). A player i is influential in process (G, θ) ∈ P if
Di(G, θ) 6≈ (G, θ). The set of all influential players is {i ∈ N : Di(G, θ) 6≈ (G, θ)}.

We conclude this section with a summary of introduced concepts. We
defined processes as combinations of game forms with probabilistic information
of the policy maker about the strategies players choose. Next, we introduced
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outcome equivalence as a way to determine similarity of player’s strategies
across game forms. Further, we introduced subprocesses as the corresponding
concept to subgames as introduced in Mailath et al. (1993). Finally, the choice
removal removes agency from a player and hands it to nature. Choice removal
allows us to express whether a player is influential or not.

4 Axiomatization

We phrase the problem of finding a measure of freedom as a problem of finding
a representation of the policy maker’s preference relation % over processes P.
Behind the veil of ignorance, the policy maker must decide which process to
implement for the players and forms preferences according to certain desirable
criteria described below. Under these criteria, we then obtain a representation
defined as:

Definition 10 (Representation). A function U : P → R represents a binary
relation % if for all a, b ∈ P,

a % b⇔ U(a) ≥ U(b). (11)

U is called a representation of %.

To ensure that the relation is nontrivial, we employ the following definition
of essentiality:

Definition 11. A pair of social outcomes x, y is essential for player i if 6 ∃xi ∈
Oi : x, y ∈ xi and it is not the case that all processes on the set {(G, θ) ∈ P : G ∈
G[{x, y}]} are indifferent.

With the first axiom, we assume the policy maker has a complete and
transitive preference relation on processes.

Axiom 1 (Rationality). % is a weak order on P, i.e.,

— a, b ∈ P implies a % b or b % a or both.

— a % b, b % c imply a % c.

Transitivity is a natural requirement from a rationality perspective. However,
completeness relies on the policy maker having to rank all possible processes.
This is more restrictive as the policy maker may be unwilling to rank two
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processes on different decision domains. The policy maker may also find some
game form G and some information θ incompatible with each other and may
therefore be unable to compare (G, θ) to other processes.

Processes that are similar to each other should also be similarly ranked by
the policy maker. We therefore adapt two conditions that ensure this. The
following Continuity axiom ensures that convergence of information about
behavior ensures convergence in preference of the policy maker.

Axiom 2 (Continuity). For all p ∈ P and all game forms G the lower and upper
sets of %, {θ ∈ ∏n

i=1 ∆∆Ai : p % (G, θ)} and {θ ∈ ∏n
i=1 ∆∆Ai : (G, θ) % p} are

closed.

Continuity requires that for a fixed game form, similar information over
players’ strategies yields a similar ranking in the preference. It does not require
that similar game forms are similarly ranked. For this, we assume the following
Outcome Equivalence axiom.

Axiom 3 (Outcome Equivalence). (G, θ) ≈ (G′, θ′)⇒ (G, θ) ∼ (G′, θ′).

Outcome equivalence makes different game forms comparable. Game forms
only matter to the extent that they generate strategic choices with different
conditional probabilities over individual outcomes.10

Example. In the Montgomery bus game, the policy maker may have some
observational data about players’ behavior. The policy maker however does
not observe the action in which player 1 buys her own bus and drives by
herself. Neither does the policy maker observe that player 1 constructs her
own vehicle, goes by airplane etc.. However, most likely the policy maker
cannot exclude with certainty that these options were not part of the game
form when the choice was made. Outcome Equivalence handles this issue
by imposing on preferences that changing the game form to allow for such
actions does not change the preferences of the policy maker unless these actions
are chosen with positive probability. This is the central advantage of ranking
combinations of game forms with information about behavior instead of game
forms. Representing policies by game forms would probably also require the
choice of the game form to contain implicitly the policy maker’s beliefs about
which actions are played. Alternatively, one would need to rely on definitions

10Note that Outcome Equivalence creates large equivalence classes of processes. It may
be interesting to consider changes to this axiom to measure other aspects such as power or
information transmission in games.
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such as what the legal or possible actions are. In the Montgomery bus game,
including only legal actions would remove the actually played actions a2

2 and a3
2.

Allowing for all possible actions would add the action of player 1 to construct
her own vehicle. Neither of these options seems attractive for the purposes of
policy evaluation. End of example.

We now impose independence conditions on three levels. First, on lotteries
over outcomes, second on the probabilistic information over strategies, and third
on subprocesses. The axiom on the independence of lotteries over outcomes
is the standard von Neumann-Morgenstern axiom adapted to our setting.
Processes in which no player is influential are effectively lotteries and thus we
apply the independence axiom with respect to such processes.

Axiom 4 (Lottery Independence). Suppose no player is influential in (G, θ),
(G, θ′), (G, θ′′), then,

(G, θ) % (G, θ′) (12)

⇔ α(G, θ)⊗ (1− α)(G, θ′′) % α(G, θ′)⊗ (1− α)(G, θ′′) (13)

In other words, if nature fully controls the outcomes of the players, then
the standard independence axiom holds. In combination with Rationality and
Continuity, this axiom requires the decision maker to have expected utility
preferences over pure lotteries, i.e., processes in which nature determines the
outcomes and players have no meaningful choice.

We emphasize that Lottery Independence is a weakening of full indepen-
dence across all processes. In essence, we are allowing the decision maker to
have a strict preference for uncertainty about player’s strategies over identical
uncertainty over moves of nature but do not require the decision maker to do
so. Full independence across both types of uncertainty would prevent the
decision maker from having such preferences. Thus, arguing in favor of full
independence across all processes would require presenting reasons why the
policy maker should never prefer uncertainty about strategies to uncertainty
about nature’s moves. Given that the decision maker may believe that self-
determination of outcomes by players is superior to random assignment by
nature, full independence does not seem to be normatively warranted.

Lottery Independence excludes certain value judgments about institutions.
Most importantly, it does not allow for source-dependent (Chew & Sagi, 2008)
attitudes towards the uncertainty generated by the moves of nature. Source-
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dependence only arises between uncertainty generated by different players and
nature.

Example. Consider nature’s lottery over race and gender in the Montgomery Bus
Game. A policy maker who finds outcome-dependence on gender undesirable
but outcome-dependence on race acceptable violates Lottery Independence.
Suppose (G, θ) is a process in which player 1 is a black female and (G, θ′) is
the process in which player 1 is a black male. In each process, the policy maker
believes that player 1 plays a1

1 with certainty and player 2 plays a1
2. The policy

maker is indifferent between the two processes. Now suppose (G, θ′′) is the
process of a white male who chooses a3

1. Then, the LHS mixture of (13) is a
gender-and-race-dependent lottery while the RHS is a race-dependent lottery.
Since gender-dependent lotteries are intrinsically undesirable to the policy
maker, the indifference no longer holds – the policy maker prefers the RHS
mixture to the LHS, violating Lottery Independence. End of example.

Strategy Independence ensures that the value of choice across strategies is
independent across the different strategies.

Axiom 5 (Strategy Independence). Suppose θi[µi] = θ′i [µi] and ρG,θ|µi = ρG,θ′ |µi

for all µi ∈Mi ⊆ ∆Ai, then

(G, θ) % (G, θ′) ⇔ DMi
i (G, θ) % DMi

i (G, θ′) (14)

In other words, the value of choice between two strategies does not depend
on the other choices being made. The choice removal DMi

i has the effect of
taking the choice between some strategies Mi out of the control of player i.
From the perspective of all other players, the game remains unchanged; the
probability of each outcome given any of their strategies is the same as before
choice removal.

Example. Suppose the policy maker believes that player 1 chooses with equal
probability to play the pure strategies 1a1

1
, 1a3

1
, or 1a5

1
. In another process, the

policy maker believes that player 1 chooses with equal probability 1a1
1
, 1a3

1
, or

1a4
1
. Suppose that the policy maker learns that the choice between the pure

strategies of 1a1
1
, or 1a3

1
is determined by race. Then the ranking between the

two processes remains unchanged if the behavior of the other player is identical
in both processes. The latter requirement is crucial; in case player 2 plays the
pure strategy a3

2, the choice between 1a1
1

and 1a3
1

is meaningless. In case player

20



2 plays a1
2, then the choice of player 1 is effectively between outcomes u1 and

v1. Strategy Independence therefore captures that ceteris paribus the value of
making a strategic choice instead of nature determining the choice does not
depend on other strategic choices. End of example.

Next, Subprocess Monotonicity ensures that the value of choice across
subprocesses is independent if the outcomes of the subgame are independent
of the remainder of the game.

Axiom 6 (Subprocess Monotonicity). Let (G, θ) and (G, θ′) be equivalent outside
the non-null subgame B. Suppose the set of influential players in both processes
is N′ and for all i ∈ N′ we have that suppi[o[B]] ∩ suppi[o[A\B]] = ∅. Then,

(G, θ) % (G, θ′)⇔ (G, θ)|B % (G, θ′)|B. (15)

Put simply, the relation % is monotone in subprocesses that have a disjoint
support from the remainder of the game form: we can improve a process by
improving any subprocess unless some of the outcomes of the subprocess are
identical to the remainder of the process. The central idea behind this axiom is
the following: if a set of players is influential, they can make choices to favor
their interests. If they can better favor their interests in a subgame, then this
is preferable from the perspective of the policy maker. However, this is only
the case if this improvement does not come at the cost of influence across the
entire game.

Example. This example illustrates the need for requiring disjoint outcomes.
Suppose only player 1 is influential and is choosing between sitting and standing
on the bus via the pure strategies 1a1

1
and 1a3

1
. Let’s suppose the policy maker

is indifferent between disallowing standing on the bus or disallowing sitting
on the bus (essentially, limiting the player to either of the two actions). Since
outcomes are subgames, any game involving a choice between standing and
sitting contains the subgame in which the player stands or sits with certainty.
Under Subprocess Monotonicity without requiring disjoint outcomes, replacing
the sitting subgame by the subgame in which the player stands would leave
the policy maker indifferent. But then the agent is left in the overall game
with a trivial decision between standing and standing. This means that a
meaningful choice (between sitting and standing) and a meaningless choice
(between standing and standing) are equally good according to the preferences
of the policy maker.
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The problem can be resolved by requiring disjoint outcomes in Subprocess
Monotonicity. Replacing the subgame in which the player sits by a subgame
in which the player stands does not leave the policy maker indifferent in case
somewhere in the remainder of the process the player stands. The monotonicty
axiom in this case does not bind since the outcomes of the two subprocesses
are not disjoint. End of example.

In the appendix, we prove the following theorem.

Theorem 1. Suppose for every player i there are at least four essential pairs of outcomes.
The relation % on the process space P fulfills Axioms 1-6 if and only if there exists a
continuous, real valued representation U : P→ R, and for every player i a function
vi : Oi → R and a real number di such that

U[G, θ] = ∑
i∈N

Ui[G, θ] (16)

Ui[G, θ] =∑
µi

θi[µi] ∑
xi∈Oi

ρG,θ|µi[xi]

(
vi[xi] + di ln

[
ρG,θ|µi[xi]

ρG,θ[xi]

])
(17)

For each player, the measure consists of an expected valuation of the out-
comes and the player’s control over own individual outcomes. We call the
expected valuation the instrumental value of the process and the control mea-
sure the freedom value of the process. We denote the freedom measure of
player i by Fi[G, θ] = Ui[G, θ]−Ui[Di(G, θ)].

The policy maker has for each role in the institution expected utility pref-
erences over implementing specific outcomes. Freedom is measured by the
mutual information between strategies and outcomes. Mutual information is
a measure of correlation that imposes no structure on the relation between
variables. In comparison, the correlation coefficient assumes a linear relation.
Spearman’s rank order correlation assumes that each of the variables can be
ordered. Since the policy maker is given no information about the intention
behind strategies, mutual information is the adequate correlation measure for
judging the degree to which players use strategies to control outcomes. By
separating the mutual information terms into entropies, we can understand the
workings of the mutual information measure as follows. The policy maker uses
for each player the Shannon entropy to evaluate the quantitative diversity of the
outcomes reached (i.e., the Suppes measure). If all outcomes are reached with
equal likelihood, then this entropy is maximal and equal to the logarithm of
the number of distinct outcomes reached. If only a small amount of outcomes
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are reached or if few outcomes are reached with high probability, then the
quantitative diversity will be low. To account for control, the policy maker
deducts the expected conditional entropy of the outcomes given the strategies
of the players. Thus, the more quantitative diversity of outcomes is left after
choosing a specific strategy, the lower the freedom measure. This quantitative
diversity of outcomes can either be due to other players’ strategies or due to
nature.

Example. We return to the Montgomery bus game to exemplify the data neces-
sary to apply the measure. As stated before, the advantage of our framework is
that it does not rely on unobservable information about utilities. Instead, we
require observational or experimental data about the strategies of the players
that can help inform the policy maker.11 For simplicity, we focus on the subpro-
cess induced by the subgame {a1

1, . . . , a4
1} × {a1

2, a2
2}. This is meaningful thanks

to the Subprocess Monotonicity axiom; if we are interested in the freedom of
choice of the overall process, we would simply need to calculate the freedom
of choice from the remaining process with an arbitrary outcome u substituted
for the subgame in which player 1 boards the bus. To the freedom obtained for
this process we then add the sum of the freedom from the subprocess times the
probability of reaching this subprocess. More succinctly put, the freedom of an
overall process consists of the expected freedom of the disjoint subprocesses
plus the freedom derived from determining which of these subprocesses is
played. While this is not obvious from the functional form of the freedom
measure, it is guaranteed via Subprocess Monotonicity. This decomposability
property is important for applications since it allows us to focus on localized
data specific to an interaction.

The reduced form of the subgame contains the action profiles {{a1
1, a2

1},
{a3

1, a4
1}} × {a1

2, a2
2}. Under the institutional setting of Montgomery in the

early 1950s, we can inform a policy maker using the following information.
To know the weight attached to nature’s lottery over race, the policy maker
needs to know the ridership composition, or more precisely the frequency
with which individuals of different background play the Montgomery bus
game. Next, we need to know the strategies chosen by the players, conditional

11The central difficulty of applying the measure to observational data is the possible existence
of mixed strategies. In the Montgomery bus game there is no good reason to assume that
players play mixed strategies but in other games this might be different. Then observational
data of the actions taken is not sufficient for the estimation of freedom of choice since the
choice is between mixed strategies, not actions. Instead, the mixed strategies would need to be
identified via experimental treatments.
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on race. An extremely small fraction of courageous black women took the
action {a3

1, a4
1}. Since in their cases the driver took action a2

2, they were arrested.
The overwhelming majority of black passengers endured the discriminatory
treatment by taking action {a1

1, a2
1}. To account for cases in which player 1

refused to yield their seat and managed to keep the seat, we would also need
to obtain information whether any drivers took action a1

2 when interacting with
a black passenger. Lacking evidence of such cases, we assume that this did
not happen. Similarly, there are no known accounts of white passengers being
arrested for refusing to give up their seat. To estimate their freedom of choice of
voluntarily yielding their seat, we need to know the fraction of white passengers
that take action a1

1. If α is the fraction of black passengers, ε the fraction of black
passengers refusing to yield their seat and being arrested, and γ the fraction
of white passengers yielding their seat voluntarily, then the non-instrumental
component of freedom of choice yields after rearranging terms:

(U1[G, θ]−U1[D1(G, θ)])/di

= ε · α
(

ln
1
ε

)
+ (1− γ)(1− α)

(
ln

1
1− γ

)
+ (α(1− ε) + (1− α)γ)

(
ln

1
α(1− ε) + (1− α)γ

)
+ εγ(1− α) ln (1− α) + (1− ε)(1− γ)α ln α (18)

The measure is monotonically increasing in ε for the given scenario in which
ε is small. A crucial point is that the freedom of player 1 is not the weighted
sum of the freedom of a white player 1 and a black player 1. The fact that the
outcomes are partially determined by nature’s lottery over race is intrinsically
undesirable which prevents this separability. In the following, we interpret
the terms in (18). The first three rows of (18) are the entropy of the outcomes
reached. In case player 1 would have perfect control over which of the outcomes
u, v, w arises, this would be the freedom of choice of the player.12 However,
the outcome partially depends on nature’s lottery. The last row of (18) corrects
for this with two negative terms. The first term corrects for the probability
1− α with which player 1 reaches outcome u when “choosing” outcome w.
The second term corrects for the probability with which player 1 reaches w

12Indeed, this would be the Suppes (1996) measure.
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when “choosing” u. Both terms are negative since α and 1− α are smaller than
one. In each case, the correction term arises from the fact that the conditional
probability of the outcome given the strategy is not equal to one.

The example also shows that the freedom measure is completely neutral
towards the characteristic of the outcomes. All judgments regarding whether
for example the outcome v is in the eyes of the policy maker more desirable
than the outcome w can only be contained in the instrumental value of the
process. End of example.

It is important not to confuse vi with the utility representations of individu-
als. vi instead represents the policy maker’s value for implementing specific
outcomes for players and cannot contain players’ utilities. Since utility is not
observable, it must be estimated from behavior. But the axioms prescribe that
behavior only enters the mutual information measure in a meaningful way. This
has far reaching consequences for a utilitarian policy maker in practice. Either
the policy maker accepts that in the absence of cardinal utility information the
mutual information criterion is the best we can do to approximate utilitarianism
or the policy maker must argue why any of the stated axioms must be violated
in the estimation of the expected utility of every player.

A commonly employed assumption in the freedom of choice literature
removes the dependence of freedom of choice on the policy maker’s norms by
assuming that all singletons are indifferent. We can translate this condition into
our setting as saying that all outcomes are instrumentally equally valuable to
the policy maker:

Remark 1. Suppose we assume the assumption of the indifference of no-choice
axiom (Pattanaik & Xu, 1990), i.e., for all social outcomes x, y, the trivial games
yielding the outcomes with certainty are indifferent, ((N, {a}, a 7→ x), 11a) ∼
((N, {a}, a 7→ y), 11a). Then the instrumental value is a constant and U only
depends on the mutual information between strategies and individual outcomes
of every player.

We now discuss under which additional assumptions and domain restric-
tions the proposed freedom measure becomes identical to various measures
of the literature. For an overview, see Figure 2. Naturally, since the policy
maker’s preferences in this paper are on a richer domain, this does not imply
that the representation theorem is a generalization of previous characterizations.
Instead, it is a particular extension of the ordering of other measures to a richer
domain.
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Suppes (1996) proposes to measure freedom as the entropy of the relative
frequencies with which an agent chooses the alternatives of an opportunity set:

Definition 12. Entropy Freedom Measure (Suppes, 1996)
FS(P) = −∑x∈C P(x) ln P(x) where P(x) refers to the probability with which
an agent chooses element x of the opportunity set C.

The entropy measure increases both in the total number of options chosen with
positive probability and how even the distribution of these chosen outcomes is.

U[G, θ]

Suppes (1996)

Jones and Sugden (1982)

Pattanaik and Xu (1990)

D−i(G, θ) = (G, θ)

P

ρG,θ|µi[xi] ∈ {0, 1},
xi ∼ yi, ∀xi, yi

xi, yi ∈ suppi[G, θ]
⇒ ρG,θ[xi] = ρG,θ[yi]

suppi[G, θ] = Oi

Figure 2: Relation of Freedom Measures

Since the Shannon entropy is a limiting case of mutual information, our
measure extends the measure of freedom by (Suppes, 1996) in a natural manner:

Remark 2. Suppose indifference of no-choice holds and only player i is influential.
Moreover, let supp(θi) contain only pure strategies and for all a, supp[o[a]] ⊆ xi

for some xi ∈ Oi. Then, U[D−i(G, θ)] = FS((x 7→ xi)]ρG,θ).

This establishes the relation of the measure to the Suppes measure. In case an
individual has perfect control over outcomes and the policy maker is indifferent
between all outcomes, then the measure is equal to the Suppes measure of the
distribution of the probability distribution over outcomes. The result follows
from the fact that supp[o[a]] ⊆ xi ensures ρ|1a[xi] = 1. From this result, the
comparisons to other measures directly follow. Since the Suppes measure
extends the ranking of several other measures (for details, see Appendix ), the
above remark also establishes the relation to various other measures. Figure 2

displays the relation between different measures.
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5 Freedom in a Production Economy

The utility of a definition naturally rests in how useful it is in applications.
To further illustrate the defined freedom measure, we analyze freedom in a
production economy, a similar problem to the one put forward in Pattanaik
(1994). According to Pattanaik (1994), the problem of measuring freedom in an
exchange economy is that prices and therefore also opportunity sets change both
with one’s own preferences and preferences of the other agents.13 Since most
measures of freedom are based on opportunity sets, they fail to give a satisfying
answer to the problem, as Pattanaik (1994) concludes. The following subsections
develop a production economy with heterogeneous consumers differing in
both tastes and productivity. From the perspective of the policy maker, each
individual’s tastes and production possibilities are uncertain. More precisely,
the policy maker does not know the individual’s expected utility functions.
Thus, no cardinal value can be attached to utilities. Instead, utilities are
only used to rationalize behavior, i.e., to generate predictions about consumer
behavior. The policy maker forms preferences over different levels of tax
progression. Ex ante, it is unclear whether high or low redistribution is optimal
for freedom. A politician in favor of higher redistribution might argue that
income differences limit freedom and redistribution gives everybody equal
opportunities. A politician in favor of less redistribution might argue that
redistribution intervenes in the personal decisions of individuals to consume
more or less by distorting working incentives. Using the freedom measure, we
can disentangle these qualitative intuitions.

5.1 Production Economy

According to the information of the policy maker, the economy is structured as
follows. A continuum of individuals indexed by i is uniformly distributed on
the unit interval [0, 1]. Individuals have preferences over consumption xi and
labor effort yi. To obtain closed-form solutions, parametric assumptions on the
preferences over consumption xi ≥ 0 and labor effort yi ≥ 0 are made:14

ui(xi, yi) = αi
(δxi)

1−η

1− η
−

yζ+1
i

ζ + 1
. (19)

13Sugden (2004) revisits this problem to derive a binary opportunity criterion for policies.
14For ease of calculations, we assume that yi ∈ (0, ∞).
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where η ∈ (0, 1) and ζ ∈ (0, ∞). The individual specific preference parameter
αi is distributed log-normally and independent across individuals, i.e., αi ∼
lnN (µα, σ2

α).15 Quality δ is measured by the quantity of unit-quality goods
that leaves the consumer indifferent to one unit of quality δ. δ is distributed
log-normally, δ ∼ lnN (µδ, σ2

δ ).
Let there be a competitive firm with production function Q =

∫
i yiβγidi.

The economy-wide efficiency parameter β is distributed log-normally with β ∼
lnN (µβ, σ2

β). Similarly, γi is distributed log-normally with γi ∼ lnN (µγ, σ2
γ).

The firm’s profit is given by pQ−
∫

wiyidi. In equilibrium, the firm earns zero
profits and wages and prices are wi = pβγi.

We introduce a government that taxes income via a progressive tax. The
net income of each individual i equals expenditure, f (r,β,δ)(yiwi)

1−r

1−r = xi p. The
parameter r determines the progressivity of the tax and f (r, β, δ) is chosen
such that the government balances its budget. The functional form of the tax
progression is chosen in order to obtain closed form solutions that allow for
clear comparative statics. Introducing tax progression that does not yield a
homogeneous transformation of income would only allow for a numerical
analysis. The government consumption is assumed to equal a fixed total share
ḡ of the output of the firm, g = ḡQ and therefore (1− ḡ)Q =

∫
xidi. In the

appendix it is shown that consumption demand and labor supply in the above
described economy are (up to a proportionality factor):

x∗i ∝

(
(αiδ

1−η)1−r
(

β
1+r 1−η

ζ+η γ1−r
i

)ζ+1
) 1

ζ+η(1−r)+r

(20)

y∗i ∝

(
αiδ

1−η

(
β

1+r 1−η
ζ+η γ1−r

i

)1−η
) 1

ζ+η(1−r)+r

(21)

5.2 The Production Economy as a Process

Although a production economy is commonly not perceived as a game, we can
still model it as a process.16 We define the set of players N as the unit interval
of individuals.

Let the set of actions of a player be the set of demand functions, Ai =

{(p, w) 7→ (xi, yi) : xi[p, w]p = yi[p, w]w}, i.e., the available actions of each
15Technically, the assumption here is that there exists a measure on a continuum of random

variables such that the weak law of large numbers holds and each variable is i.i.d. lognormal.
For a general existence proof of such measures, see Theorem 2 of Judd (1985).

16For a survey of game theoretic analyses of markets, see Giraud (2003).
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individual are all feasible consumption demand and labor supply functions
given the budget constraint. We assume that when the individual chooses
the demand function, he is informed about the quality of the good δ, his
productivity γi and the aggregate shock β. Thus, a strategy is a fully contingent
plan in which each individual i chooses a demand function17 for each possible
value of γi and β. According to the information of the policy maker, the
support of θi contains only the strategies with supply and demand functions
consistent with maximization of (19). Since for every value of αi there exists
a unique strategy, the set of distinct strategies in the support of θi has a
real valued representation in the form of αi. θi is such that each αi follows a
lognormal distribution. A strategy profile is therefore represented by a mapping
α ∈ RN

+. This identification of strategies with a preference parameter is the
main conceptual step in translating the production economy into a process.

What is left to do is to ensure that the conditional distribution of allocations
given strategies is consistent with that in the production economy. To this
end, o : A → O yields a distribution over social outcomes as follows. Each
social outcome is an allocation (y∗ : N → R+, x∗ : N → R+) that is randomly
determined via a measure o[α] consistent with Equations (21) for all individuals
with lognormal distributions of β, γi, and δ. This concludes our translation of
the production economy into a process and we can now apply the measure to
this process.

To measure freedom, some normative impositions must be made regarding
the measure. To obtain closed form solutions, we ignore18 the tradeoff between
the instrumental value and the freedom measure by only focusing on the
freedom measure ∑i Fi(G, θ). Another simplifying assumption is that we value
every individual’s freedom identically di = dj for all i, j ∈ [0, 1].

The most interesting normative decision of the policy maker is the choice of
the individual outcome partition Oi. The choice of Oi is ultimately a normative
question and we will explore in detail how the choice of the individual outcome
space affects the preferences of the policy maker over different institutional
arrangements.

17This seems to imply that we are indeed assuming observability of utilities here. However,
any model that yields the same statistical relationship between consumption, productivities,
and consumption/labor yields the same ranking. This follows from the properties of mutual
information (Kraskov et al., 2004).

18Due to the additive separability of the instrumental value and the freedom measure, if a
decision maker has a nontrivial instrumental value, then under standard well-behavedness
assumptions, the comparative statics effects can be decomposed into an effect related to the
instrumental value and an effect related to the freedom measure.
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We calculate freedom for three definitions of normatively relevant outcomes:
consumption, labor, or combinations of consumption and labor. We may call the
different freedoms consumption freedom, labor freedom, and demand freedom.
Consumption freedom refers to the degree to which the consumer’s strategy
influences the quantity consumed. Labor freedom refers to the degree to which
the consumer’s strategy influences the amount of labor. Demand freedom refers
to the degree to which the strategy determines combinations of consumption
and labor.

Since the strategies of the individuals and the measure over outcomes are
all continuous random variables, we replace the sums in the freedom measure
by integrals, yielding the density mutual information.

5.3 Consumption Freedom

In this subsection the policy maker imposes that for each individual i, any two
social outcomes (allocations) (x, y) and (x′, y′) in O are equivalent from the
perspective of player i, if and only if the consumption of i is identical, xi = x′i.
Therefore, the set Oi is the partition of O into sets of outcomes within which the
consumption level of i is identical. We call this consumption freedom because
the policy maker ignores all other differences in outcomes.

Proposition 1. Consumption Freedom is measured by:

1
2

ln

[
1 +

(1− r)2σ2
α(η + ζ)2

(η + ζ − ηr + r)2((ζ + 1)2σ2
β + (1− η)2σ2

δ ) + (1− r)2(η + ζ)2(ζ + 1)2σ2
γ

]
(22)

From this proposition it becomes apparent that consumer freedom is in-
creasing in σ2

α and decreasing in σ2
β, σ2

γ, and σ2
δ . This is intuitive, σ2

α increases
the diversity of strategies played, increasing freedom. For a very small variance
of α, the individual is almost completely determined in his preferences over
consumption and labor effort. If the variance of α is large, the individual may
also prefer very high consumption and high labor effort or low consumption
and low effort. This effect could also be observed in the opportunity set based
measure of Jones and Sugden (1982) in a deterministic setting: for a given
opportunity set, the measure increases when adding additional reasonable
preference relations with new optimal elements of the opportunity set.

σ2
β, σ2

γ, and σ2
δ decrease the control of the consumer by stochastically “dis-

turbing” the budget constraint and the quality of the received good. This is
intuitive since stochastic production possibilities limit the extent to which an
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individual’s preferences control consumption. An individual is less free, if his
consumption strongly depends on fluctuating production conditions, including
quality. Nonetheless, if the policy maker has the choice to implement any
degree of tax progression, the policy maker will choose a flat tax, r = 0. This is
because tax progression not only removes the effect of individual productivity
disturbances γi but also decreases strategic diversity arising from different αi;
the strategies played by two different realizations of αi become more similar
with higher r. In the case of σ2

β = 0, these effects cancel exactly and any level of
progression is optimal. However, for positive σ2

β, tax progression is not fully
effective at reducing productivity disturbances as it attenuates disturbances
on the economy-wide level less effectively than at the individual level. The re-
duction in strategic diversity therefore dominates the reduction in productivity
disturbances.

5.4 Labor Freedom

In this subsection we now assume that the policy maker only cares about the
freedom to choose between allocations with different labor efforts. Therefore,
(c, y) and (c′, y′) are treated as distinct outcomes for player i if and only if
yi 6= y′i and are otherwise elements of the same element of Oi.

Proposition 2. Labor Freedom is measured by:

1
2

ln

1 +
σ2

α(η + ζ)2

(1− η)2
((

σ2
β + σ2

δ

)
(η + ζ − ηr + r)2 + (1− r)2σ2

γ(η + ζ)2
)
 (23)

For labor freedom, the comparative statics with respect to σ2
α , σ2

β, and σ2
γ

are unchanged compared to consumption freedom; freedom increases in σ2
α ,

but decreases in σ2
β, and σ2

γ. However, the strategic diversity has a direct effect
on labor choices that is not mediated by (1− r). It follows that labor freedom
can be effectively increased using a progressive tax system. The policy maker
faces a tradeoff between reducing inequality and leaving room for individuals
to determine their labor outcomes that yield the following optimal solution:

Proposition 3. The policy maker’s optimal tax progressivity is given by:

r∗ = min

[
1, max

[
0,

σ2
γ(η + ζ)2 − (σ2

β + σ2
δ )(1− η)(η + ζ)

(σ2
β + σ2

δ )(η − 1)2 + σ2
γ(η + ζ)2

]]
. (24)
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On the interior, r∗ is decreasing in σ2
β, and increasing in σ2

γ, ζ, and η.

Thus, if the policy maker expects disturbances in productivity mostly being
on the individual level, the policy maker chooses a more progressive tax system.
If the policy maker expects disturbances to be macroeconomic, the policy maker
chooses a lower degree of tax progression.

5.5 Demand Freedom

If the policy maker imposes that two outcomes (c, y) and (c′, y′) are normatively
equivalent from the perspective of individual i if and only if xi = x′i and yi = y′i,
we speak of a model of demand freedom. Since demand freedom uses the
cartesian product of consumption and labor, demand freedom is the easiest to
increase; a lack of freedom over consumption can be substituted for by a lack of
freedom over labor and vice versa. It is harder to achieve independent control
of the two variables.

The freedom over demand curves is exercised under perfect control except
for the disturbance due to quality. This is evident from the demand equation

αix
1−η
i δ1−η =

yζ+1
i

1− r
(25)

which depends on δ. Therefore, if the policy maker cares about freedom of
choice over demand curves, we obtain that the policy maker will try to minimize
the extent of the disturbance due to quality fluctuation; the freedom measure
becomes:

Proposition 4. Demand freedom is equal to:

1
2

ln

[
1 +

σ2
α

(η − 1)2σ2
δ

]
. (26)

We note that demand freedom is unaffected by the tax policy. Example policy
instruments to achieve a higher freedom are consumer protection regulations
and product standards. Such policies may reduce the stochasticity of quality
σ2

δ and thereby increase freedom of choice. Naturally, such policies may also
be instrumentally valued for other reasons. However, within the framework
presented in this paper, we do not need to employ utilitarianism to motivate
such policies.
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Naturally, in the general context of an economy we would expect many
other freedoms to play a role, for example the freedom to choose a specific
occupation or to choose among different products. The model presented here
is only a small starting point for a more general analysis of freedom of choice
in markets.

6 Concluding Remarks

The policy evaluation criterion we presented is consistent with three principles
that are commonly employed in economics. First, the criterion only depends
on observable information; in classical welfare economics this information
used is ordinal preference, in our game theoretic setting, the information used
is the strategy of a player. Second, based on the available information, the
criterion defaults to maximizing the control of individuals. Third, in game
forms the criterion obeys independence across (disjoint) subgames. Without
this independence, we would need to worry that improving freedom of choice
in some context negatively impacts overall freedom of choice. Taken together,
these principles guarantee that the the criterion can readily be applied19 to
many contexts, two of which have been exemplified in this paper.
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A Freedom Measures

Philosophers and economists alike have stressed the intrinsic importance of
freedom (e.g., Berlin, 1958; Sen, 1988). To this end, the freedom of choice
literature,20 following the seminal contributions of Pattanaik and Xu (1990) and
Jones and Sugden (1982), provides measures that can be used to determine the
freedom offered by an opportunity set. In the following, the measures most
closely related to the measure proposed in this paper will be reviewed. All
measures will be indexed by the authors’ last names. We begin with measures
based on opportunity sets. A freedom relation %F holds between subsets C of
X. C %F C′ with C,C′ ⊆ X can be interpreted as ‘the opportunity set C offers
weakly more freedom than the opportunity set C′’. The measure of Pattanaik
and Xu (1990) states that the freedom offered by an opportunity set C is its
cardinality |C|, that is:

Definition 13. Cardinality Measure (Pattanaik and Xu, 1990)
Suppose C,C′ ⊆ X. Then C %F,PX C′ ⇔ |C| ≥ |C′|.

A possible issue of this measure is that it may count alternatives that no
reasonable agent would ever choose. Jones and Sugden (1982) proposed to
evaluate opportunity sets by two criteria. The first criterion is how many options
a reasonable person would choose from the available options. The second is
how strongly a reasonable person may feel about choosing a particular option.21

Pattanaik and Xu (1998) axiomatize the first criterion based on a set of so-called
“reasonable” preference relations R and freedom is measured according to the
set of reasonably chosen alternatives {x ∈ C : ∃R ∈ R : ∀y : xRy}.

Definition 14. Reasonable Preference Measure (Jones & Sugden, 1982; Pat-
tanaik & Xu, 1998)
Suppose C,C′ ⊆ X. Then C %F,JS C′ iff

|{x ∈ C : ∃R ∈ R : ∀y : xRy}| ≥ |{x ∈ C′ : ∃R ∈ R : ∀y : xRy}|.

The measure thus states that the freedom an opportunity set offers can be
measured by the cardinality of the set of reasonably chosen alternatives.

20For surveys of the literature, see Barberà et al. (2004), Baujard (2007), or Dowding and
van Hees (2009).

21Sugden (1998) argues in favor of a combined criterion of the two based on utility information.
Since the main goal of this paper is a measure based on empirically accessible data, we focus
here on only the first criterion.
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It has been argued that freedom of choice is strongly connected to diversity.
Individuals are more free if they are able to make choices over a more diverse
opportunity set. Two types of diversity have been identified: Qualitative
diversity refers to how distinct elements of a set are and has been given a
formalization in Nehring and Puppe (2008). Quantitative diversity refers to the
relative frequencies with which different objects are chosen and can for example
be measured by the Shannon (1948) entropy. The entropy freedom measure
of Suppes (1996) can be seen as a generalization of the reasonable preference
measure if the distribution P is interpreted as a “degree of reasonability” since
the entropy is increasing in the total number of evenly distributed elements.

The closest in spirit to our model is the literature on freedom of choice in
game forms (Ahlert, 2010; Bervoets, 2007; Braham, 2006; Peleg, 1997). Moving
from opportunity sets to a more general framework was an important concep-
tual innovation. This moved the quest for a proper measure of freedom from
measuring numbers of alternatives to measuring control over choice.22 This
is important since cases of actual policy relevance (discrimination, consumer
freedom, political participation) are unlikely purely decision theoretic; difficult
policy tradeoffs commonly involve the freedoms of multiple individuals.

Bervoets (2007) suggests using the maxmin criterion to rank game forms
according to which the game form is ranked by the best element a player
can guarantee to obtain. Ahlert (2008) ranks game forms according to the
maxmin criterion on the guaranteed level of well-being provided by a society.
Ahlert (2010) phrases the question of a measure of freedom of choice from
the perspective of a policy maker (an approach which we follow here). In
this framework, Ahlert (2010) measures the sets of alternatives that can be
determined and the sets of alternatives that can be excluded via a lexicographic
cardinality rule. The central difference of the current paper to the work on
ranking game forms is that our policy maker ranks game forms combined with
probabilistic information about players’ behavior. For a stylized example of
why this is important, consider a game in which a player may choose between
actions that deteriorate democratic instutions or improve these institutions.
This decision power of the player may be evaluated very differently depending
on the policy maker’s information about whether the player will indeed take
this action. Therefore, the ranking leaves out important information in case it
relies only on the information contained in the game form.

22For a classification of the richness of possible limitations to freedom by other individuals,
see Carter (2013).
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A precursor to the idea of measuring freedom via the (probabilistic) degree
to which individuals control their outcomes can be found in the measure by
Braham (2006) which endows game forms with probabilities to account for
interactions between agents. The measure captures the degree to which an
individual i can force a certain outcome x to come about in the game. With
some abuse of notation the measure states:

Definition 15. Game Form Measure (Braham, 2006)
FB(x, i) = P(outcome is x|i chooses x) = P(outcome is x and i chooses x)

P(i chooses x)

where it may occur that P(outcome is x|i chooses x) < 1 because the actions of
the other agents may lead to another outcome, even if i chooses x. The measure
therefore takes up the idea that an agent is free if he can force certain outcomes
to occur. Unlike the measure by Braham (2006), the measure in the present
paper employs probability measures over agent’s strategies and accounts for
multiple outcomes.

We briefly give an overview over the remaining literature. Similar to the
game form approach, Bossert (1998) and Arlegi and Dimitrov (2009) treat the
options offered by opportunity sets as only indicative of the outcomes the indi-
vidual can achieve. Qualitative diversity and characteristics of opportunity sets
are analyzed in Nehring and Puppe (2008, 2009), Rosenbaum (2000), van Hees
(2004). The qualitative diversity of sets of lotteries is measured in Gustafsson
(2010), Sher (2018). Puppe and Xu (2010) and Ryan (2016) add information
about essential elements to opportunity sets. An extension of the opportunity
set based approach is to also include information on the constraint from which
the options are chosen (Bavetta & del Seta, 2001). Unstable preferences as a
source of preference for flexibility/freedom are considered in (Koopmans, 1964;
Kreps, 1979; Sugden, 2007). The idea of multiple preference relations as in
Jones and Sugden (1982) has been further examined by Sugden (1998), Nehring
and Puppe (1999), and Bavetta and Peragine (2006). An important topic is also
the distribution of freedom between individuals, for which a survey is given by
Peragine (1999). Broader discussions are given by Carter (1992), Carter (1995),
van Hees and Wissenburg (1999) Bavetta (2004), Carter (2004), Kolm (2010), and
Shnayderman (2016).
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B Further Definitions

In this appendix, we restate precise definitions for the notions of strategic
equivalence, reduced form, information sets, and subgames used throughout
the text.

B.1 Strategic Equivalence

In some game forms, duplicate actions may exist. Generally, adding or removing
such actions should have no effect on the interaction represented by the game
form. We therefore require a notion of strategically equivalent actions. For
notational convenience, we use the same notation ≈ for strategic and outcome
equivalence as defined in the main text.23

Definition 16 (Strategically Equivalent Actions). Two actions ai, a′i ∈ Ai are
strategically equivalent given B−i ⊆ A−i, denoted ai ≈B−i a′i, if for all a−i ∈ B−i

we have that o[ai, a−i] = o[a′i, a−i]. ai, a′i are strategically equivalent, ai ≈ a′i, if
they are strategically equivalent given A−i.

We now make definitions that allow us to remove all such duplicate actions
from a game form. Denote by Ai/≈ the quotient set with respect to the
equivalence relation ≈, i.e., all actions ai ∈ Ai are replaced by their equivalence
class {a′i ∈ Ai : ai ≈ a′i}. With some abuse of notation, denote by A/≈ =

∏j Aj/≈ the profiles resulting from replacement of all strategically equivalent
actions by their equivalence class with canonical projection f : a 7→ {a′ ∈ A :
∀i ∈ N : ai ≈ a′i} from action profiles to their respective equivalence class.

Definition 17 (Reduced Form). For a strategic game form G = (N,A, o), the
reduced strategic form G/≈ is given by (N,A/≈, f ◦ o).

Here ◦ denotes the usual function composition.

Example. Consider the Montgomery bus game with the adjustment that x = y.
In this case, the reduced form is given in Table 2. End of example.

23It will always be clear from context what type of equivalence is meant.
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a1
2 a2

2 a3
2

{a1
1, a2

1} u u x=y
{a3

1, a4
1} v w x=y

a5
1 z z z

Table 2: Reduced Form Example

B.2 Information Sets and Subgames

Definition 18 (Normal Form Information Set). In a reduced normal form G,
the set B ⊆ A is a normal form information set of player i if

B = Bi ×B−i (27)

∀ai, a′i ∈ Bi, ∃a′′i ∈ Bi : ai ≈B−i a′′i , a′i ≈A−i\B−i
a′′i . (28)

It follows immediately that every profile a ∈ A is an information set for
every player. If a set of actions is an information set for every player, then it is a
subgame:24

Definition 19 (Normal Form Subgame). B ⊆ A is a normal form subgame if it
is a normal form information set for each player.

Example. In Table 1, the set {a1
1, . . . , a4

1} × {a1
2, a2

2} is a subgame. We verify (28)
of Definition 18 for the two actions a1

1 and a4
1. The condition requires that there

is an action that agrees with a1
1 on the subgame and with a4

1 elsewhere. This
action is given by a2

1, as it is strategically equivalent with a1
1 given {a1

2, a2
2} and

strategically equivalent with a4
1 given {a3

2}. Intuitively, this means that the
action player 1 plays on the subgame can be independently chosen from the
action outside the subgame. It is straightforward to check the remaining actions
in a similiar manner. End of example.

In line with Mailath et al. (1993), Theorem 3, the relation between normal
form subgames with extensive form subgames can be summarized as follows.
For every normal form game G with a normal form subgame G′, there exists
an extensive form game E with a reduced normal form G that contains an
(extensive form) subgame E′ with a reduced normal form G′. Therefore, if the
reduced normal form contains all strategically important features of an exten-
sive form (Elmes & Reny, 1994; Thompson, 1952), then employing normal form

24Formally, B by itself is not a game form. However, together with the original game form G,
B uniquely determines the game form (N,B, o|B). We follow Mailath et al. (1993) in calling B

a normal form subgame.
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subgames and normal form information sets is without loss of generality in the
axiomatics. Since the policy maker also has information about the behavior in
the game form, this does not commit us to assuming that individual’s behavior
is uninfluenced whether the game is perceived by players as an extensive form
or in its reduced normal form. If the policy maker has information that the
players perceive the game in a particular extensive form and act accordingly,
then this should be reflected in the information about behavior.

C Proof of Theorem 1

The overall proof structure is as follows:

1. We first prove some technical lemmas that are useful. These include
connectedness of the order topology on the set of processes and a result
that allows us to deduce a quasi-separable representation of the form
f (x, z) + g(y, z) from two conditionally additive representations of the
form h( f (x, z) + g(y, z), z). The key axioms used are Continuity and
Outcome Equivalence.

2. Next, we show that on the space of processes that are lotteries (i.e., in
which no player other than nature is influential), we have an expected
utility representation. The key axioms used are Lottery Independence
and Outcome Equivalence.

3. Following, we prove that there exists a representation that is quasi-
separable across players and their strategies conditional on the outcome
probabilities. More specifically, we show that this representation is linear
in the probabilities of strategies. The key axioms used are Strategy Inde-
pendence, Outcome Equivalence and the expected utility representation
over lotteries.

4. Having obtained quasi-separability across all players we can focus on
processes that have only a single influential player. We show that the
preferences over these processes are additively separable across outcomes.
All assumptions except Strategy Independence are used in this step.

5. Next, we combine the linear representation across strategies with the
additive representation across outcomes.

40



6. Lastly, we employ the fundamental equation of the theory of information
to solve for the procedural component. The key axiom used is Subprocess
Monotonicity and the additive separability of the procedural preferences
across strategies and from the expected utility of the subprocesses.

To state each Lemma concisely, we omit repeating the axioms employed in the
theorem.

C.1 Technical Lemmas

We define the order topology on P as the topology generated by the intersections
of sets of the form {p ∈ P : p � p′} and {p ∈ P : p′′ � p} for arbitrary
p′, p′′ ∈ P.

Lemma 1. P is connected in the order topology.

Proof. By connectedness of the real numbers and Continuity, the order topology
on any subspace of P of the form {(G, θ) : θ = αθ′ ⊕ (1− α)θ′′} is connected.
By completeness and transitivity of the relation, this topology is identical to the
subspace topology of the order topology on P. If P is not connected, then it is the
union of two nonempty disjoint open sets P′ and P′′. Take any element p′ ∈ P′

and p′′ ∈ P′′. The order topology on P′′′ = {(G, θ) : θ = αθ′ ⊕ (1− α)θ′′}
is disconnected by the nonempty open sets P′ ∩ P′′′ and P′′ ∩ P′′′, yielding a
contradiction. Thus, P is connected.

Lemma 2. Suppose f (g(x, y), z) = xa(y, z) + b(y, z) holds for continuous functions
f : R× Z→ R and g : R× Y→ R on some sets Y, Z. Let f and g be invertible in
the first argument, then,

f (r, z) = h−1(r)j(z) + k(z)

g(x, y) = h(xl(y) + m(y)). (29)

Proof. Let f−1, g−1 denote the inverses of f and g in their first arguments,
respectively. We use invertibility of the two functions to derive:

g(x, y) = f−1(xa(y, z0) + b(y, z0), z0)

f (r, z) =g−1(r, y0)a(y0, z) + b(y0, z)

f (g(x, y), z) =g−1(g(x, y), y0)a(y0, z) + b(y0, z)

=g−1( f−1(xa(y, z0) + b(y, z0), z0), y0)a(y0, z) + b(y0, z) (30)
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which, by the assumption that f and g are continuous, is affine in x if and only
if g−1(r, y0) and f−1(r, z0) are (up to an affine transformation) inverses to each
other. The result then follows by appropriate definitions for h, j, k, l, m.

C.2 Expected Utility Representation on Lotteries

Lemma 3 (Expected Utility on Lotteries). On the set of nature’s lotteries over
outcomes, {(G, θ) : (G, θ) = DN(G, θ)}, the relation % can be represented by
U[G, θ] = ∑o∈O ρ[o]U[o].

Remark 3. U[x] is shorthand for U[(N, {a}, a 7→ 1x), 11a ].

Proof. We show that % fulfills the assumptions of Herstein and Milnor (1953).
By Outcome Equivalence,

DN(G, θ) = (G, θ)⇒ (G, θ) ≈ ((N, {a}, a 7→ ρG,θ), 11a) (31)

That is, any process in which no player is influential is outcome equivalent to a
trivial process with a single action profile a in which a lottery over outcomes
is resolved with probabilities ρG,θ. The set of probability distributions form a
mixture space. Furthermore,

α(G, θ)⊕ (1− α)(G′, θ′) ≈ ((N, {a}, a 7→ αρG,θ ⊕ (1− α)ρG′,θ′), 11a) (32)

and therefore mixtures between processes translate into mixtures between
outcome probability distributions. It follows from Lottery Independence that:

((N, {a}, a 7→ ρG,θ), 11a) % ((N, {a}, a 7→ ρG′,θ′), 11a)

≈ ≈
(G, θ) % (G′, θ′)

= =

DN(G, θ) % DN(G′, θ′)

⇔ αDN(G, θ)⊕ (1− α)DN(G′′, θ′′) % αDN(G′, θ′)⊕ (1− α)DN(G′′, θ′′)

≈ ≈
((N, {a}, a 7→ αρG,θ ⊕ (1− α)ρG′′,θ′′), 11a) % ((N, {a}, a 7→ αρG′,θ′ ⊕ (1− α)ρG′′,θ′′), 11a)

(33)

It follows that on the set of lotteries, % fulfills the independence axiom (Her-
stein & Milnor, 1953, Axiom 3) with respect to the outcome probabilities ρG,θ.
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Rationality and Continuity guarantee their Axioms 1 and 2. The existence of an
expected utility representation follows from their Theorem 8.

C.3 Conditional Linearity in Probabilities of Strategies

Lemma 4 (Separability in Strategies). There exists a representation of the form:

U[G, θ] = ∑
i∈N

∑
µi

θi[µi]vi(ρG,θ|µi, ρG,θ) ≡ ∑
i∈N

Ui[G, θ]. (34)

Proof. Both the information over strategies θ = ∏i∈N θi and the information
over strategies of particular individuals θi are probability distributions and
therefore elements of mixture spaces. We first use Strategy Independence to
derive a conditional expected utility representation for each θi. We derive the
following conditional independence property. If for all j ∈ N − {i} and all
µj ∈ ∆Aj:

ρG,θi⊗θ−i |µj =ρG,θ′i⊗θ′−i
|µj = ρG,θ′′i ⊗θ′′−i

|µj (35)

ρG,θi⊗θ−i =ρG,θ′i⊗θ′−i
= ρG,θ′′i ⊗θ′′−i

(36)

then

(G, (
1
2

θi ⊕
1
2

θ′′i )⊗ θ−i) %(G, (
1
2

θ′i ⊕
1
2

θ′′i )⊗ θ−i) (37)

⇔ (G, θi ⊗ θ−i) %(G, θ′i ⊗ θ−i) (38)

We emphasize at this point that the mixture in the above processes each repre-
sents uncertainty of the policy maker about the strategies played by the player,
not a random choice by nature. The proof of the above independence result
uses Strategy Independence and Outcome Equivalence. First we remove choice
over strategies in Mi = supp[θ′′i ]. Note that for this purpose, we may assume
that θ′′i has disjoint support from θi and θ′i since by Continuity we can choose a
disjoint support that is arbitrarily close to the actual support of θ′′i . Applying
the choice removal DMi on both sides leaves the preference unchanged. Using
an outcome equivalent transformation, we have:

(G, (
1
2

θi ⊕
1
2

θ′′i )⊗ θ−i) %(G, (
1
2

θ′i ⊕
1
2

θ′′i )⊗ θ−i) (39)

⇔ (G, (
1
2

θi ⊕
1
2

1µ∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗i
)⊗ θ−i) (40)
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where 1µ∗i
denotes a mixed strategy in which i plays the actions with the same

probability with which they are played in θ′′i . Now suppose the marginal distri-
butions fulfill (35). Then there exists some outcome equivalent transformation
such that

(G, (
1
2

θi ⊕
1
2

1µ∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗i
)⊗ θ−i) (41)

⇔ (G, (
1
2

θi ⊕
1
2

1µ∗∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗∗i
)⊗ θ−i) (42)

where 1µ∗∗i
plays each action with the same probability as the marginal proba-

bility in θi. It follows that:

(G, (
1
2

θi ⊕
1
2

1µ∗∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗∗i
)⊗ θ−i) (43)

⇔ (G, θi ⊗ θ−i) %(G, (
1
2

θ′i ⊕
1
2

θi)⊗ θ−i) (44)

Proceeding in a similar manner we can derive

(G, (
1
2

θi ⊕
1
2

1µ∗∗∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗∗∗i
)⊗ θ−i) (45)

⇔ (G, (
1
2

θi ⊕
1
2

θ′i)⊗ θ−i) %(G, θ′i ⊗ θ−i) (46)

where 1µ∗∗∗i
plays each action with the same probability as in θ′i .

Combining (44) with (46), we have by transitivity the desired result (37). By
Rationality and Continuity, using Theorem 8 of Herstein and Milnor (1953), it
follows that for fixed conditional outcome probabilities given the other player’s
strategies, we have an expected utility representation on θi.25

Next, it holds for θN′ ⊗ θN−N′ = ∏i∈N′ θi ⊗∏i∈N−N′ θi that if for all j ∈
N−N′ and all µj ∈ ∆Aj:

ρG,θN′⊗θN−N′
|µj =ρG,θ′

N′⊗θN−N′
|µj (47)

=ρG,θN′⊗θ′
N−N′
|µj (48)

=ρG,θ′
N′⊗θ′

N−N′
|µj, (49)

ρG,θN′⊗θN−N′
=ρG,θ′

N′⊗θN−N′
= ρG,θN′⊗θ′

N−N′
= ρG,θ′

N′⊗θ′
N−N′

, (50)

25Although this result holds for arbitrary i, this of course does not yet imply that (for fixed
probability of o) the aggregation (across i) of the expected utility representations is additive.
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then:

(G, θN′ ⊗ θN−N′) %(G, θ′N′ ⊗ θN−N′) (51)

⇔ (G, θN′ ⊗ θ′N−N′) %(G, θ′N′ ⊗ θ′N−N′) (52)

The proof is almost identical to the above, except that instead of removing
choice over the strategies in Mi for a single player i, instead the choice over
the entire strategies ∆Aj is removed for all j ∈ N−N′. We therefore have an
additively separable representation across the probabilities of the strategies of
each of the players.

Finally, we show that the expected utility representation and the additive
representation across players are jointly additive. If for some individuals i, j,

ρG,θij⊗θ−ij |µk =ρG,θ′ij⊗θ−ij
|µk (53)

=ρG,θij⊗θ′−ij
|µk (54)

=ρG,θ′ij⊗θ−ij
|µk, µk ∈ ∆Ak, ∀k ∈ N− {i, j}, (55)

ρG,θij⊗θ−ij =ρG,θ′ij⊗θ−ij
= ρG,θij⊗θ′−ij

= ρG,θ′ij⊗θ′−ij
(56)

then,

(G,
(

1
2

θi ⊕
1
2

θ′i

)
⊗
(

1
2

θj ⊕
1
2

θ′j

)
⊗ θ−ij) %(G,

(
1
2

θi ⊕
1
2

θ′i

)
⊗
(

1
2

θj ⊕
1
2

θ′j

)
⊗ θ−ij)

(57)

⇔ (G,
(

1
2

θi ⊕
1
2

θ′′i

)
⊗
(

1
2

θj ⊕
1
2

θ′′j

)
⊗ θ−ij) %(G,

(
1
2

θi ⊕
1
2

θ′′i

)
⊗
(

1
2

θj ⊕
1
2

θ′′j

)
⊗ θ−ij)

(58)

When fixing all θk, ρ, and all ρ|µk for all individuals k 6= i, j and strategies µk in
the support, we can therefore find an additive representation of the form:

U[G,
(

1
2

θi ⊕
1
2

θ′i

)
⊗
(

1
2

θj ⊕
1
2

θ′j

)
⊗ θ−ij] (59)

= fi[θi] + gi[θ
′
i ] + f j[θj] + gj[θ

′
j] (60)

Since for the probabilities of strategic choice of each individual we have an
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expected utility representation, we indeed have:

U[G,
(
αθi ⊕ (1− α)θ′i

)
⊗
(

βθj ⊕ (1− β)θ′j

)
⊗ θ−ij] (61)

=αhi[θi] + (1− α)hi[θ
′
i ] + βhj[θj] + (1− β)hj[θ

′
j] (62)

since the expected utility representation is additive and uniqueness of additive
representations applies. Further, we can derive hi[θi] = ∑µi

θi[µi]w[µi] using
Cauchy’s functional equation. By Outcome Equivalence, increasing the proba-
bility that µi will be played instead of µ′i only matter if ρG,θ|µi 6= ρG,θ|µ′i, thus:
hi[θi] = ∑µi

θi[µi]vi[ρG,θ|µi]]. While we have only shown additive separability
of the expected utility representations for i and j, the extension to n individuals
is straightforward and we therefore obtain a representation:

U[G, θ] = V

[
∑

i
∑
µi

θi[µi]vi[ρG,θ|µi], ρG,θ], ρG,θ

]
(63)

for arbitrary ρG,θ.
What is left to show is that V is affine in its first argument. For this, we

assume there are three influential players.26 Consider a process θ such that:

θ =θ{B,C,D} ⊗ θB ⊗ θC ⊗ θD (64)

θ{B,C,D} =θ1 ⊗∏
j 6=1

11dj
(65)

θB =θ2 ⊗∏
j 6=2

11bj
(66)

θC =θ3 ⊗∏
j 6=3

11cj
(67)

θD =θ4 ⊗∏
j 6=4

11dj
(68)

This process has three subprocesses in which on each subprocess only a single
player chooses between strategies. All other players play a single pure strategy.
Player 1’s strategies determine which of the subprocesses is being played. We
assume that the three subprocesses each have two disjoint outcomes from the

26It is straightforward to adapt the proof to a single influential player. Employing distinct
influential players for each subprocess makes the proof notationally clearer, however.
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remainder of the game form. We have the representation:

V
[

∑
µ1

θ1[µ1]v1[ρG,θ|µ1, ρG,θ] (69)

+ ∑
µ2

θ2[µ2]v2[ρG,θ|µ2, ρG,θ] (70)

+ ∑
µ3

θ3[µ3]v3[ρG,θ|µ3, ρG,θ] (71)

+ ∑
µ4

θ4[µ4]v4[ρG,θ|µ4, ρG,θ], ρG,θ

]
(72)

For fixed outcome probabilities, this representation is additively separable
in the three subprocesses. Note that by Subprocess Monotonicity, on the
space of processes of the above form, % fulfills joint independence across
subprocesses for fixed θ1. By Gorman (1968) there then exists an additively
separable representation of the form:

W[ f2[θ2, θ1] + f3[θ3, θ1] + f4[θ4, θ1], θ1] (73)

where W is monotone and thus invertible in its first argument. We show that
W must be affine. Indeed, by the existence of an expected utility representation
in case θ1 = 1µ1 , . . . , θ4 = 1µ4 it follows that W is affine if θ1 = 1µ1 . Without loss
of generality then,

V
[

v1[ρG,θ|µ1, ρG,θ] (74)

+ ∑
µ2

θ2[µ2]v2[ρG,θ|µ2, ρG,θ] (75)

+ ∑
µ3

θ3[µ3]v3[ρG,θ|µ3, ρG,θ] (76)

+ ∑
µ4

θ4[µ4]v4[ρG,θ|µ4, ρG,θ], ρG,θ

]
= f2[θ2, θ1] + f3[θ3, θ1] + f4[θ4, θ1] (77)

if θ1 = 1µ1 . Since the three players 2, 3, 4 are influential, their sum components
on the LHS vary for fixed ρG,θ. It follows that for fixed ρG,θ, both the RHS
and the first argument of V are additive representations across θ2, . . . , θ4. We
therefore obtain by uniqueness of additive representations that V is affine
in the first argument. Since ∑µi

θi[µi] = 1, it is without loss of generality to
assume that V is the unit transformation. We therefore obtain the desired
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representation:

U[G, θ] = ∑
i∈N

∑
µi

θ[µi]vi[ρG,θ|µi, ρG,θ] (78)

= ∑
i∈N

Ui[G, θ] (79)

C.4 Additive Separability on Subprocesses

The remainder of the proof is about specifying the functional form of Ui. In
order to identify vi for some player i, we need to consider only processes in
which a single player i is influential, since

Ui[G, θ] (80)

=U[D−i(G, θ)]−∑
j 6=i

Uj[D−i(G, θ)] (81)

=U[D−i(G, θ)]−∑
j 6=i

U[D−jD−i(G, θ)] + ∑
j 6=i

∑
k 6=j

Uk[D−jD−i(G, θ)] (82)

=U[D−i(G, θ)]−U[DN(G, θ)] + Ui[DN(G, θ)]. (83)

The latter two terms of the expressions have already been determined as
expected utility representations. We therefore focus on processes of the form
D−i(G, θ). Using Outcome Equivalence, we can further focus on the processes
in which all uncertainty is resolved in the mixed strategies of player i instead of
by nature. For this, we define a game form G∗ = (N,A∗, o∗) such that for some
bijection f : O→ A∗, o[ f (x)] = 1x.

To state the following lemma, it is useful to define pushforward measures. If
f is a measurable mapping from S to S′, then f #µ is the pushforward measure
fulfilling f #µ[s] = µ[ f−1[s]] for all s ∈ S′.

Lemma 5 (Equivalence to game form without nature). Suppose that θ[µ] =

θ∗[ f #
⊕

a µ[a]o[a]] for all µ ∈ supp[θ], then (G, θ) ∼ (G∗, θ∗).

Proof. The two processes are outcome equivalent.

Lemma 6 (Power Removal Lemma). Let (G, θ) be in outcome form with mapping
f : O→ A∗. Let g : O→ ∏i Oi be the product mapping of each of the canonical maps
gi of the partition Oi. Let A′ = {B ⊆ A : ∃xi ∈ Oi : f [xi] = B}. Let θ′ and o′ fulfill
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for all a′ ∈ A′ and all µ:

o′[a′] = 1 f−1[a′] ⊗∏
j 6=i

gj#ρG,θ (84)

θ′[ f ◦ gi ◦ f−1#µ] = θ[µ] (85)

Then (G, θ) ∼ (G′, θ′).

Thus, we replace each action profile in A with an action that yields a
particular outcome from Oi and the same lottery across all other outcomes. This
naturally generates an outcome equivalent process.

Proof. We show that the processes are outcome equivalent. For all j 6= i and all
a′ ∈ A′,, µi ∈ ∆Ai: gj#ρG,θ = gj#o′[a′] = gj#ρG′,θ′ |µi = gj#ρG′,θ′ . For player i, we
first note that f ◦ gi ◦ f−1 is the canonical mapping from A to A′, since A′ is
a partition of A. All actions in a′ yield the same outcome for i as each a ∈ a′.
Therefore, gi#ρG,θ|µ = gi#ρG′,θ′ | f ◦ gi ◦ f−1#µ.

Note that in processes in which power has been removed, there exists a
bijection f ′ : Oi → A such that the action a of player i determines the outcome
f−1[a] with certainty.

To use Subprocess Monotonicity, we require disjoint subgames. Consider
the canonical mapping g : O→ Oi that maps each element to their equivalence
class. Note that the image f [g−1[xi]] is a subgame of G∗. We now create
for every process (G∗, θ) an indifferent process (G∗, θ∗) such that µ[ f [x]] =

µ[ f [xi]]
⊕

µ′ θ[µ′]µ′[x]⊕
µ′ θ[µ′]µ′[xi]

for all µ ∈ supp[θ∗]. In other words, while strategies may

differ about the probabilities of elements of Oi, conditional on reaching xi ∈ Oi,
all strategies yield the same probability distribution over outcomes. This means
that player i can only influence the own outcomes. To prove this, we must first
find a way to decompose a process into subgames. This is done in the following
Lemma.

Lemma 7 (Disjoint Subprocess Decomposition Lemma). Let (G, θ) be in powerless
outcome form with mapping f : O→ A. Consider a partition A of A. For any B ∈ A,
denote by θB the conditional probabilities fulfilling (G, θB) = (G, θ)|B. Let the
function h : supp[θ] ×∏B∈B suppθB → ∆A map strategies on every subgame to
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strategies in the game such that: Define,

h[k#µ, {µB}B][C] =∑
B

k#µ[B]µB[B∩ C] (86)

θ∗[h[µ′, {µB}]] =θ[µ′]∏
B

θB[µB] (87)

b :
(
k#µ, {µ|B}B∈A

)
7→
⊕
B

k#µ[B]µ|B (88)

θA[k#µ] =θ[µ] (89)

θ∗ =b#

(
θA ⊗∏

B

θB

)
. (90)

Then, (G∗, θ) ∼ (G∗, θ∗).

Proof. The two processes are identical on every subprocess. By subprocess
monotonicity, if after equalizing the outcomes within each of the subprocesses
the two processes are equivalent, then they are indifferent. Note that after
identifying the outcomes of the actions within each subprocess, all strategies
µ that are identical under the pushforward k#µ are strategically equivalent. It
follows that in this case every µ ∈ suppi[θ] is strategically equivalent to all
elements of h[µ, ∏B∈B suppθB ]. Since θ∗[h[µ, ∏B∈B suppθB ]] = θ[µ], it follows
that the processes are equivalent.

We now focus on processes in outcome form in which i has no power
and with some subprocess decomposition corresponding to a partition Oi of
Oi. These processes have all information stripped that are irrelevant for the
determination of Ui. Note that the bijection f , every partition of Oi corresponds
to a unique partition of A and vice versa. The specification of a partition of
outcomes gives us a unique subprocess decomposition. In the following, we
will refer to such processes alternatively as Oi-decomposed or A-decomposed
processes.

Lemma 8. Let Si contain all processes fulfilling (G, θ) = D−i(G, θ) in powerless
outcome form with bijection f : Oi → A. Let Oi be a partition of Oi containing three
elements with jointly essential outcomes. Then A = { f [x] : x ∈ Oi} there exists a
representation U : Si → R of % such that:

U[G, θ] = K

[
∑
B∈A

FB[U[(G, θ)|B], θ∗
A
], θ∗

A

]
. (91)
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Proof. We proceed in the following steps:

1. We provide the representation for an arbitrary fixed partition of outcomes.

2. We show that the choice of the partitioning does not influence the repre-
sentation.

Consider the decomposition A = {B,C,D}. Without loss of generality, by the
previous lemmas we find the indifferent process (G∗, θ∗

A
⊗ θ∗B ⊗ θ∗C ⊗ θ∗D).

We use the result of Gorman, 1968 to obtain an additively separable
representation. To apply this result, we require a product space, topologi-
cal connectedness of each dimension of the product space, and continuous
preorders on the subsets of dimensions of the product space that are addi-
tively separable in the representation. Clearly, the set of processes of the
form (G∗, θ∗

A
⊗ θ∗B ⊗ θ∗C ⊗ θ∗D) forms a product space with the dimensions be-

ing the strategies over subprocesses and the set of strategies θ∗{B,C,D} that
determine which subprocess is played. We use the preorder topology on
these subsets which guarantees connectedness by Lemma 1. By Subprocess
Monotonicity, (G∗, θB) %i (G∗, θ′B) if and only if (G∗, θA ⊗ θB ⊗ θC ⊗ θD) %i

(G∗, θA ⊗ θ′B ⊗ θC ⊗ θD). This yields so-called coordinate independence in
each of the subprocesses but not joint independence of the three dimen-
sions. To obtain joint independence, we also need a preorder on combi-
nations of subprocesses, for example θB ⊗ θC. We obtain this preorder by
finding for every process the indifferent process (G∗, θ{B∪C,D} ⊗ θB∪C ⊗ θD).
For such processes, we have that (G∗, θB∪C) %i (G∗, θB∪C) if and only if
(G∗, θ{B∪C,D} ⊗ θB∪C ⊗ θD) %i (G∗, θ{B∪C,D} ⊗ θB∪C ⊗ θD). This yields a well
defined preorder on combinations of subprocesses and therefore we have joint
independence. From Gorman, 1968 then follows the existence of a representa-
tion of the form:

U[G, θ] = K
[

FB[θ∗{B,C,D}, θ∗B] + FC[θ∗{B,C,D}, θ∗C] + FD[θ∗{B,C,D}, θ∗D], θ∗{B,C,D}

]
(92)

The extension to arbitrary finite dimensions follows from a simple induction
argument, since for a process in powerless outcome form, the union of any two
disjoint subgames form a disjoint subgame. Finally, we note that FB must be an
increasing function of U[(G, θ)|B] for changes in θ∗B.
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Lemma 9. Suppose (G, θ) = D−i(G, θ). Let A be a partition of A into subgames
with disjoint, essential outcomes. Then there exists a representation of %i in the form

U[G, θ] = ∑
B∈A

U[G, θ∗B]MB[θ
∗
A
] + LB[θ

∗
A
]. (93)

The result follows from repeated application of a uniqueness argument of
additive representations; if a relation can be represented by a sum of two or
more additive functions, then any other such representation must be an affine
transformation of this representation.

Proof. By the previous Lemma, we may construct additive representations over
processes with decompositions A = {B, {C,D},E} and A

′
= {B,C, {D,E}}.

Note that on the set of processes in which E is null, the representations must
agree up to a positive monotone transformation. We assume this transformation
to be the identity (this is without loss of generality as we can simply redefine K
for one of the representations). Letting θ∗

A
converge to the case where E is null

yields by Continuity two representations of the form:

U[G, θ] =K[FB[U[G, θ∗B], θ∗
A
] + FC∪D[U[G, θ∗C∪D], θ∗B,C∪D], θ∗

A
]

=K′[F′B[U[G, θ∗B], θ∗
A
′ ] + F′C[U[G, θ∗C], θ∗

A
′ ] + F′D[U[G, θ∗D], θ∗

A
′ ], θ∗

A
′ ] (94)

Since the first argument of K and K′ are both additive representations over θ∗B
and θ∗C, for fixed θ∗{B,C∪D}, the transformation K−1[K′[·, θ∗

A
′ ], θ∗

A
] must be affine.

We note that all information in θ∗
A

is contained in θ∗
A
′ . It follows that

F′B[U[G, θ∗B], θ∗
A
′ ] = FB[U[G, θ∗B], θ∗

A
]MB[θ

∗
A
′ ] + LB[θ

∗
A
′ ] (95)

Note that we can choose K, K′ such that M only depends on θ∗
A\E = θ∗{B,C∪D}

since the ranking over θ∗B is separable from the ranking over θ∗{C,D}. More
generally, for any subgame B and its complement A\B, the transformation FB
only depends on the utility of the subprocess U[G, θ∗B] and the measure θ∗

B,A\B.
Therefore, we obtain the representation:

K′[F′B[U[G, θ∗B], θ∗{B,A\B}] + F′C[U[G, θ∗C], θ∗{C,A\C}] + F′D[U[G, θ∗D], θ∗{D,A\D}], θ∗
A′
]

(96)

What is left to show is that all FB and K are affine. Note that in the above
representation, we can let θ∗{B∪C∪D} converge to θ∗{C∪D} by letting B become
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null. On the subset of such processes, we obtain the representation:

U[G, θ∗C∪D] = K′
[

F′C[U[G, θ∗C], θ∗{C,D}] + F′D[U[G, θ∗D], θ∗{C,D}], θ∗{C,D}

]
(97)

Noting that Equation (94) is a monotone function of the above, we can substitute
and use the uniqueness of additive representation argument to obtain that
FC∪D[K′[r, θ∗{C,D}], θ∗{B,C∪D}] is affine in r. This condition fulfills the functional
equation solved in Lemma 2. It follows that there exists some continuous
monotone transformation of U that makes both K and all functions FC affine
transformations of their first argument.

Lemma 10.

MC[θ
∗
{B,C,D}] =MC∪D[θ

∗
{B,C∪D}]MC[θ

∗
{C,D}] (98)

=MC[θ
∗
{C,B∪D}]. (99)

Proof. From the previous lemma, we have the following representations:

U[G, θ] =U[G, θ∗{B,C,D} ⊗ θ∗B ⊗ θ∗C ⊗ θ∗D]

=U[G, θ∗C]MC[θ
∗
{B,C,D}] + . . .

=U[G, θ∗{B,C∪D} ⊗ θ∗B ⊗ θ∗{C,D} ⊗ θ∗C ⊗ θ∗D]

=U[G, θ∗C∪D]MC∪D[θ
∗
{B,C∪D}] + . . .

=U[G, θ∗C]MC[θ
∗
{C,D}]MC∪D[θ

∗
{B,C∪D}] + . . . , (100)

where we have assumed without loss of generality that the game form G is
sufficiently rich in actions. Using a small change in U[G, θ∗C], the first line of the
result follows since the change must be equal in all of the above representations.
The second line result can be derived by comparing the above representation to:

U[G, θ] =U[G, θ∗{C,B∪D} ⊗ θ∗C ⊗ θ∗{B,D} ⊗ θ∗B ⊗ θ∗D] (101)

=MC[θ
∗
{C,B∪D}]U[G, θ∗C] + . . . (102)

By a small change in U[G, θ∗{C,B∪D}], it then follows that MC[θ
∗
{B,C,C}] = MC[θ

∗
{C,B∪D}].

Lemma 11. MC[θ
∗
{C,D}] = ∑µ θ∗{C,D}[µ]µ[C].

Proof. We use the special case of a process with a support of three subprocesses
and in which only a single strategy µ′ yields with positive probability the
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subprocess obtained by conditioning on the subgame C. Formally, let θ fulfill
for all µ:

θ[µ] > 0, µ[C] > 0⇒ µ = µ′ (103)

from this follows that we can parametrize the following measures:

θ∗{C,B∪D} = f [θ[µ′], µ′[C]] (104)

θ∗{C,B} =g

[
θ[µ′](µ′[B∪ C])

∑µ θ[µ](µ[B∪ C])
,

µ′[C]

1− µ′[B∪ C]

]
(105)

θ∗{B∪C,D} =h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]
(106)

We therefore have:

MC[θ
∗
{C,B∪D}] (107)

=MC[ f [θ[µ′], µ′[C]]] (108)

=MC[θ
∗
{B∪C}]MB∪C[θ

∗
{B∪C,D}] (109)

=MC

[
g

[
θ[µ′](µ′[B∪ C])

∑µ θ[µ](µ[B∪ C])
,

µ′[C]

µ′[B∪ C]

]]
MB∪C

[
h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]]
(110)

Note that only M{C,D} and M{B,C,D} depend on µ′[C]. We apply the following
substitutions:

∑
µ

θ[µ]µ[B∪ C] = p̂ (111)

θ[µ′]µ′[B∪ C]

p̂
=θ̂ (112)

and obtain:

MC[ f [θ[µ′], µ′[C]]] (113)

=MC

[
g
[

θ̂,
θ[µ′]µ′[C]

θ̂ p̂

]]
MB∪C

[
h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]]
(114)

It follows that the composition of MB∪C and h only depends on the values of
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θ[µ′], µ′[B∪ C], p̂, θ̂, which we write as

MB∪C
[

h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]]
= k[θ[µ′], µ′[B∪ C], p̂, θ̂]. (115)

Holding θ[µ′] and θ̂ constant we obtain a Pexider-like logarithmic equation27

with the solution,

MC[ f [θ[µ′], µ′[C]]] = f̂ [θ[µ′]]µ′[C]γ (116)

MC

[
g
[

θ̂,
θ[µ′]µ′[C]

θ̂ p̂

]]
=ĝ[θ̂]

(
θ[µ′]µ′[C]

θ̂ p̂

)γ

(117)

k[θ[µ′], µ′[C], p̂, θ̂] =k̂[θ[µ′], θ̂′] ( p̂)γ (118)

Next, we note that k̂[·] = 1 since in the limit if p̂→ 1, the functions MC[ f [. . .]]
and MC[g[. . .]] converge. It follows that f̂ [θ[µ′]] = (θ[µ′])γ and ĝ[θ̂] = (θ̂)γ.

Since we have previously obtained in the proof of Lemma 3 an expected
utility representation over outcomes, and outcomes are subgames, it follows
directly that γ = 1.

C.5 Joint Conditional Additivity on Outcomes and Strategies

We now have two representations, one conditionally additively separable in
strategies and the other additively separable across outcomes. The two rep-
resentations are affine transformations of another as shown in the proof of 4.
Without loss of generality, we assume this transformation to be the identity
transformation. We then obtain the following lemma.

Lemma 12. If A is a partition of A into disjoint subgames, then

Ui[G, θ] = ∑
µi

∑
B∈A

θi[µi] (µi[B]U[(G, θ)|B] + l[µi[B], ρ[B]]) (119)

Proof. We have two representations from previous Lemmas:

∑
µi

θ[µi]vi[ρ|µi, ρ] = ∑
B

ρ(B)U[(G, θ)|B] + LB[θ] (120)

We assume there are four subprocesses, B, C, D, and E. Without loss of

27We obtain exactly the Pexider equation on an interval domain by taking logarithms on both
sides, rearranging terms, and exponentiating the variables. Solving this functional equation
yields the stated result.
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generality, we assume that these subprocesses each yield a different outcome
with certainty and thus ρ[x|µ] = µ[B] for some outcome x. We can choose
a parametrization such that ρ|µi = f (ε, δ), ρ|µ′i = f ′(ε), and ρ|µ′′i = f ′′(δ).
Namely, we choose ε to transfer probability from µi[B] to µi[C] and from µ′i[C]

to µ′i[B] to keep the probabilities of the outcomes unchanged. δ reallocates
probability from µi[D] to µi[E] and from µ′′i [E] to µ′′i [D]. Moreover, θ|B = t(ε)
and θ|B = t′(ε) as well as θ|C = t′′(δ) and θ|D = t′′′(δ).

θ[µi]vi[ f (ε, δ), ρ] (121)

+ θ[µ′i]v
′
i[ f ′(ε), ρ] (122)

+ θ[µ′′i ]v
′′
i [ f ′′(δ), ρ] + . . . (123)

=LB[t(ε)] + LC[t′(ε)] + LD[t′′(δ)] + LE[t′′′(δ)] + . . . (124)

and therefore vi is additively separable in ε and δ. Repeating the above steps for
reassignments of probability between µi[B] and µi[D] as well as between µi[C]

and µi[E], it is straightforward to obtain that vi is indeed additively separable
across µi[B], µi[C], etc.. Thus, vi[ρ|µi, ρ] = ∑B wi,B[ρ|µi[B], ρ]. We can now
derive the functional form of LB.

LB[θ] + LC[θ] + . . . (125)

=∑
µ

θ[µ] (wi,B[µ[B], ρ]− µ[B]Ui[(G, θ)|B]) (126)

+ ∑
µ

θ[µ] (wi,C[µ[C], ρ]− µ[B]Ui[(G, θ)|C]) + . . . (127)

For fixed ρ[B∪ C] and considering only changes in θB,C, LB does not depend
on any of the omitted terms. Moreover, LB does not depend on ρ[C] since
LB[θ] = LB[θB,C∪D∪E]. Therefore, for a suitably chosen function lB, we have
that LB[θ] = ∑µ θ[µ]lB[µ[B], ρ[B]]. By Continuity, we may impose without loss
of generality that lB[0, ρ[B]] = 0.

What is left to show is that lB can be chosen to be identical across B. For
this, suppose that the support of the subprocess B contains two outcomes. By
Continuity, for a sequence of subprocesses such that the probability of one
outcome converges to zero, their utility Ui[(G, θ)|B] converges to the utility at
which the probability of the outcome is zero. Similarly, Ui[G, θ] converges to
the utility at which the probability of the outcome is zero. But then under an
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outcome equivalent transformation fB[. . .] = fB′ [. . .] where B′ is obtained by
removing actions that yield the outcome.

C.6 Determination of the Functional Form of Procedural Pref-

erences

We now define h[x, y] = l[x, y] + l[1− x, 1− y].

Lemma 13.

h(1, x) = α(x ln[x] + (1− x) ln[1− x]) (128)

Proof. We employ a process such that θ[µ] + θ[µ′] + θ[µ′′] = 1. Also, µ[B] =

µ′[C] = µ′′[D] = 1. We use the above lemma twice on different partitions,
{B,C∪D} and {C,B∪D}. We therefore obtain the two representations:

θ[µ]h(1, θ[µ]) + (1− θ[µ])h(0, θ[µ]) (129)

+ (1− θ[µ])

(
θ[µ′]

1− θ[µ]
h(1,

θ[µ′]

1− θ[µ]
) +

θ[µ′′]

1− θ[µ]
h(0,

θ[µ′′]

1− θ[µ]
)

)
(130)

=θ[µ′]h(1, θ[µ′]) + (1− θ[µ′])h(0, θ[µ′]) (131)

+ (1− θ[µ′])

(
θ[µ]

1− θ[µ′]
h(1,

θ[µ]

1− θ[µ′]
) +

θ[µ′′]

1− θ[µ′]
h(0,

θ[µ′′]

1− θ[µ′]
)

)
(132)

Where we have cancelled the terms containing U[G, θB], etc.. We may assume
without loss of generality that h(1, x) = h(0, x). We then have:

h(1, θ[µ]) + (1− θ[µ])

(
h(1,

θ[µ′]

1− θ[µ]
)

)
(133)

=h(1, θ[µ′]) + (1− θ[µ′])

(
h(1,

θ[µ]

1− θ[µ′]
)

)
(134)

This is the fundamental equation of information (Aczél & Dhombres, 1989;
Ebanks et al., 1987). Up to a constant and a linear component in θ[µ] (which
can be removed by redefining U[G, θB]), the solution is:

h(1, θ[µ]) = α (θ[µ] ln[θ[µ]] + (1− θ[µ]) ln[1− θ[µ]]) (135)
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Lemma 14.

h(x, x) = β (x ln[x] + (1− x) ln[1− x]) (136)

Proof. We employ a process with θ[µ] = 1, µ[B] + µ[C] + µ[D] = 1. The two
partitions {B,C∪D} and {C,B∪D} generate two representations which yield
after cancelling terms:

h(µ[B], µ[B]) + (1− µ[B])

(
h(

µ[C]

1− µ[B]
,

µ[C]

1− µ[B]
)

)
(137)

=h(µ[C], µ[C]) + (1− µ[C])

(
h(

µ[B]

1− µ[C]
,

µ[B]

1− µ[C]
)

)
(138)

This is the fundamental equation of information with the solution:

h(µ[B], µ[B]) = α (µ[B] ln[µ[B]] + (1− µ[B]) ln[1− µ[B]]) (139)

Lemma 15.

h[x, y] =(β− α) (x ln[x] + (1− x) ln[1− x]) (140)

+ α (y ln[y] + (1− y) ln[1− y]) (141)

Proof. We employ a process of the form θ[µ] + θ[µ′] = 1 with strategies that
fulfill: µ[B∪D] = 1 and µ′[C] = 1. We obtain the representations:

θ[µ]h[µ[B], θ[µ]µ[B]] + (1− θ[µ])h[0, θ[µ]µ[B]] + (1− θ[µ]µ[B]) (142)

·
(

θ[µ](1− µ[B])

1− θ[µ]µ[B]
h[0,

1− θ[µ]

1− θ[µ]µ[B]
] +

(
1− θ[µ]

1− θ[µ]µ[B]

)
h[1,

1− θ[µ]

1− θ[µ]µ[B]
]

)
(143)

=θ[µ]h[0, 1− θ[µ]] + (1− θ[µ])h[1, 1− θ[µ]] + θ[µ]h[µ[B], µ[B]] (144)

For better readability, we substitute x = µ[B] and y = θ[µ]µ[B].

y/xh[x, y] + (1− y/x)h[0, y] + (1− y)h[1,
1− x
1− y

y
x
] (145)

=h[0, 1− y/x] + (y/x)h[x, x] (146)
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where we made use of h[0, x] = h[1, x]. We next solve for h[x, y]:

h[x, y] =x/yh[0, 1− y/x] (147)

+ h[x, x] (148)

− (x− y)/yh[0, y] (149)

− x(1− y)/yh[1,
1− x
1− y

y
x
] (150)

From Lemmas 13 and 14 we have the solutions for h[0, y], and h[x, x]. Substitut-
ing these into the above equation gives us the solution for h[x, y]:

h[x, y] =(β− α) (x ln[x] + (1− x) ln[1− x]) (151)

+ α (y ln[y] + (1− y) ln[1− y]) (152)

=h[x, x]− h[0, x] + h[0, y] (153)

It is straightforward to verify that the solutions for h[x, x], h[0, y], and h[x, y]
are compatible with another.

We conclude the proof as follows. If β = 0, then the procedural preferences
are equal to the binary mutual information. We obtain that β = 0 by lottery
independence. If β 6= α, then U[DN(G, θ)] consists of an expectation and an
entropy, violating Lottery Independence. Extending the binary mutual informa-
tion to multiple outcomes follows from substituting the utility representation of
the subprocesses. We have therefore identified that Ui is the sum of expectations
across outcomes and mutual information. Since we determine the function h
for each player, we may choose separate parameters β and name these di.

D Proof of Propositions

Proof. The consumer i maximizes the Lagrangian:

max
xi,yi,λi

u(xi, yi)− λi(xi p− (wiyi)
1−r f (r, β, δ)

1− r
) (154)

As long as r > − ζ+η
1−η , which is guaranteed by 0 < η < 1, ζ > 0, and 0 < r < 1,

this problem has an interior solution and first order conditions are necessary
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and sufficient for optimality:

w1−r
i f (r, β, δ)λi = yζ+r

i (155)

λi p = αiδ
1−ηx−η

i (156)

xi p = (wiyi)
1−r f (r, β, δ)

1− r
(157)

From which we obtain:

w1−r
i f (r, β, δ)

p
=

yζ+r
i

αiδ1−ηx−η
i

(158)

αiδ
1−ηx1−η

i =
y1+ζ

i
1− r

(159)

Solving for the optimal consumption and labor plan:

x∗i =


(αiδ

1−η)1−r
(

f (r,β,δ)w1−r
i

p

)ζ+1

(1− r)ζ+r


1

ζ+η(1−r)+r

(160)

y∗i =


αiδ

1−η

(
f (r,β,δ)w1−r

i
p

)1−η

(1− r)−η


1

ζ+η(1−r)+r

(161)

The firm takes prices as given and maximizes the objective:

max
C,{yi}i∈[0,1],λ

Cp−
∫ 1

0
wiyidi− λ

(
C−

∫ 1

0
yiβγidi

)
(162)

from which we obtain the optimality condition:

wi = pβγi (163)
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In equilibrium with numeraire p = 1/β then:

x∗i =

 (αiδ
1−η)1−r

(
β f (r, β, δ)γ1−r

i

)ζ+1

(1− r)ζ+r


1

ζ+η(1−r)+r

(164)

y∗i =

αiδ
1−η

(
β f (r, β, δ)γ1−r

i

)1−η

(1− r)−η


1

ζ+η(1−r)+r

(165)

We assume a market clearing condition according to which the government
chooses f (r, β, δ) such that it purchases a fraction ḡ of the good. We therefore
have the market clearing and budget balance constraints:∫

xidi =(1− ḡ)
∫

βγiyidi (166)

pḡq =
∫

wiyidi−
∫

(wiyi)
1−r f (r, β, δ)

1− r
di (167)

From which we obtain:

f (r, β, δ)

1− r
=(1− ḡ)

∫
yiγidi∫

(γiyi)1−rdi
(168)

f (r, β, δ)
ζ+η

ζ+η(1−r)+r

1− r
=(1− ḡ)

(
(βδ)1−η

(1− r)−η

) r
ζ+η(1−r)+r

∫ (
αiγ

1+ζ
i

) 1
ζ+η(1−r)+r di∫ (

αiγ
1+ζ
i

) 1−r
ζ+η(1−r)+r di

(169)

As levels can be shown to be irrelevant for the mutual information of lognormal
variables, we are only interested in the proportionality:

f (r, β, δ) ∝ (βδ)
r 1−η

ζ+η (170)
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and therefore

x∗i ∝


α1−r

i δ
1−η+r (1−η)2

ζ+η

(
β

1+r 1−η
ζ+η γ1−r

i

)ζ+1

(1− r)ζ+r


1

ζ+η(1−r)+r

(171)

y∗i ∝


αi

(
(βδ)

1+r 1−η
ζ+η γ1−r

i

)1−η

(1− r)−η


1

ζ+η(1−r)+r

(172)

Taking logarithms and assuming proportionality factors Q̂ and Q̄:

ln x∗i = Q̂ +
1− r

ζ + η(1− r) + r
ln αi

+
ζ + 1
ζ + η

ln β

+
(1− r)(ζ + 1)

ζ + η(1− r) + r
ln γi

+
1− η

ζ + η
ln δ (173)

ln y∗i = Q̄ +
1

ζ + η(1− r) + r
ln αi

+
1− η

ζ + η
ln β

+
(1− r)(1− η)

ζ + η(1− r) + r
ln γi

+
1− η

ζ + η
ln δ (174)

ln αi, ln x∗i , ln y∗i are jointly normal with covariance matrix:


σ2

α

(1−r)σ2
α

ζ+η(1−r)+r
(1−r)2(σ2

α+(1+ζ)2σ2
γ)

(ζ+η(1−r)+r)2 +
(1+ζ)2σ2

β+(1−η)2σ2
δ

(ζ+η)2

σ2
α

ζ+η(1−r)+r
(1−r)(σ2

α+(1−r)(1−η)(1+ζ)σ2
γ)

(ζ+η(1−r)+r)2 +
(1−η)(1+ζ)σ2

β+(1−η)2σ2
δ

(ζ+η)2
σ2

α+(1−r)2(1−η)2σ2
γ

(ζ+η(1−r)+r)2 +
(1−η)2

(
σ2

β+σ2
δ

)
(ζ+η)2


(175)

To determine the amount of consumption and labor freedom, we employ
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two important facts. First, mutual information is invariate under homeomor-
phisms (Kraskov et al., 2004) and therefore the mutual information of the
logarithms of the variables is identical to the mutual information between
the variables themselves. Second, for jointly normal variables, the mutual
information between two variables x, y can be conveniently calculated by
MI(x, y) = −1

2 ln[1− corr(x, y)2]. Calculating the correlation between αi and
x∗i and between αi and y∗i therefore yields the Propositions 1 and 2. Proposition
3 follows directly from the first order conditions of maximizing labor freedom
with respect to r.

To derive Proposition 4, we employ the conditioning property of mutual
information: MI(x, (y, z)) = MI(x, y) + MI(x, z|y) where MI(x, z|y) is the
expectation (with respect to y) of the mutual information between x and z using
the conditional distribution of x and z given y. The closed form expression for
the conditional mutual information between αi and x∗i given y∗i would not fit
this page but can be easily calculated using symbolic mathematics software.
After cancelling terms, we obtain the value of the freedom measure:

−(1/2) ln[
σ2

δ (−1 + η)2

σ2
α + σ2

δ (−1 + η)2
]. (176)
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