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Abstract

We analyze the problem of the choice of a central bank constitution. We

model the decision problem as a choice behind a veil of ignorance in which

the policy maker only receives information about predicted behavior under

different policies. The policy maker is informed about (probability distribu-

tions of) consumers’ behavior and the distribution of productivity shocks

but does not know consumers’ interpersonally comparable utility functions.

Starting from a representation theorem for the policy maker’s preferences

over policies, we compare price stabilization, output stabilization, and

inflation targeting in a standard new Keynesian model with Calvo price

staggering. Surprisingly, under our policy criterion, the policy maker per-

ceives a tradeoff between output stabilization and price stabilization. The

reason is that in the absence of knowledge about cardinal utility functions,

stabilizing the natural level of output is not normatively desirable. We

find that the policy maker puts a higher emphasis on price stability than

output stability if price staggering is low, intertemporal discounting is high,

intertemporal substitutability is low, or substitutability between goods is

high.

Keywords: Monetary Policy, Monetary Constitution, Veil of Ignorance,

Robustness, Freedom of Choice, Policy Criteria

JEL Classification: E12, E52, E61

∗Department of Economics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei
106.

1



1 Introduction

Utilitarian economic policy evaluation requires not only an economic model
of how policies affect individual behavior but also cardinal information about
individual’s utilities. However, cardinal, interpersonally comparable utility
functions are notoriously difficult to obtain.1 Undergraduate students are
thus often cautioned not to interpret utility functions in consumer theory as
cardinally meaningful. The difficulty of obtaining cardinal utility information
has led economists to instead employ less stringent criteria such as Pareto
efficiency. This however often leads to a large set of optimal policies.

The problem of using utility information of either ordinal or cardinal scale
is amplified by the insights gained from behavioral economics – if agents do
not maximize a well-defined utility function, the policy maker runs the risk of
maximizing the wrong objective. In this paper we address these problems in
the context of monetary policy by examining what monetary policy a rational
policy maker would choose if supplied with a model of the behavior of agents
but without information about the utility scales of the agents. The absence of
useful utility information is especially plausible in the context of the choice
of a monetary constitution. Basing a monetary constitution not only on the
stability of aggregate behavior over time but also on the stability of individuals’
imputed utility functions is highly error-prone. A monetary constitution that is
robust to misspecification of the utility functions is therefore highly desirable.

It is a recurring theme in economics to create institutions such that the policy
maker does not need to know the exact utility function of individuals. For
example, the first welfare theorem gives conditions under which a market may
reach an efficient allocation without intervention of the policy maker. Another
example is the mechanism design literature that commonly designs institutions
in such a way that for some set of utility types agents voluntarily reveal their
type and reach the desired outcomes. In such settings, instead of implementing
a particular outcome, the policy maker prefers to leave decision room for the
agent. Our policy maker’s decision criterion reflects this idea by maximizing a
measure of control the agents have over their outcomes. Thus, in the absence
of utility information the policy maker maximizes the control the consumers
have over their own consumption as measured by the informativeness of the
demand functions about consumption outcomes.

We justify the criterion of the policy maker axiomatically using a decision

1For an overview of the literature, see Elster and Roemer (1991).
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problem similar to that of Harsanyi (1977). Behind a veil of ignorance, the
policy maker faces uncertainty about the future behavior of consumers and
external shocks. We impose the von Neumann-Morgenstern axioms on the
policy maker for uncertainty generated purely by external shocks. That is, if two
policies are effectively lotteries over outcomes in which the consumers have no
influence, the policy maker compares the policies by their expected desirability.
In addition, we impose that policies that are observationally indistinguishable
must be indifferent to each other. In other words, if a monetary policy yields
exactly the same predicted behavior as another monetary policy, then the policy
maker is indifferent between the two policies. This captures the idea that
economic models are only useful as descriptions of (observable) behavior and
any model-imposed unobservable quantities (such as utility) are normatively
irrelevant beyond what can be deduced from behavior.2 Two further conditions
guarantee additive separability of the policy criterion. First, we impose additive
separability of policies into subpolicies that only affect a subset of the outcomes.
Second, we impose additive separability across choices made by the agents.
If a change in policy makes the choice between two actions irrelevant, then
the entailed loss in value is independent from the other actions taken. From
these axioms follows that the decision maker ranks policies by the mutual
information between actions and outcomes and an expected valuation of the
outcomes. Thus, the policy maker maximizes the expected control of consumers
over consumption, which we interpret as a measure of freedom of choice.3

We model the information of the policy maker about the economy using a
standard new Keynesian model with sticky prices. We employ a discrete time
model of an economy in which a representative agent has constant elasticity of
substitution (CES) preferences over a continuum of goods. The marginal rate of
substitution of each of these goods is stochastic behind the veil of ignorance;
preferences over goods are unknown at the time of policy choice and may vary
over time. The agent provides labor to a continuum of firms that each produce
a single good. Firms’ productivity is also stochastic over time. There are both
firm-specific shocks and shocks to the productivity of all firms. We employ
Calvo (1983) price staggering; every period, only a fraction 1− α of firms get to
reset their prices, and all other firms must sell their goods at the same price as

2This is indeed our only axiom that is not fulfilled by an expected aggregate utility maximizer.
A utilitarian policy maker would make the evaluation of policies not only dependent on
observable behavior but also on the utility scales of the agents.

3For an overview over the freedom of choice literature, see Dowding and van Hees (2009).
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before. Firms are monopolists and maximize profits. In this setting, monetary
policy affects real variables.

In the standard new Keynesian monetary model there is usually no tradeoff
between fully stabilizing prices or the output gap. This “Divine Coincidence”
suggests that adopting a monetary policy constitution that prescribes price
stability or output stability yields equivalent results. Blanchard and Galı́ (2007)
showed that under real imperfections this result breaks down. We extend their
result by showing that if the policy maker is uninformed about utility scales,
then even in a model without real imperfections the policy maker perceives
a tradeoff between output and price stabilization. The reason is that if the
standard new Keynesian model is interpreted as only describing behavior and
the utility functions are not taken literally as the exact utility functions of
the agents, then the natural level of output inferred from the model is not
necessarily the most desirable (based on the unknown true utility of the agents).
Since our policy maker cannot know the natural level of output, this creates a
tradeoff between absolute output level stabilization and price stabilization.

Under Calvo price staggering, a utilitarian policy maker faces every period
a tradeoff between inefficient consumption of goods with rigid prices (relative
to labor) and inefficient consumption of goods with flexible prices (relative to
labor). To optimally solve this tradeoff, knowing the correct utility function is
necessary. Rotemberg and Woodford (1999) showed that under second order
approximations of utility, a policy maker solves this tradeoff by minimizing
a loss function that expresses a tradeoff between stabilizing the output gap,
stabilizing inflation, and minimizing inflation. Our policy maker instead tries to
minimize the degree to which external shocks and price fluctuations influence
consumption. A policy enforcing full price stability guarantees that all goods
are affected equally by aggregate shocks. However, aggregate shocks fully
affect consumption. The downside of dampening aggregate shocks is that
consumption of a good now depends on whether its price is flexible in this time
period or not. The policy maker therefore faces the tradeoff between reducing
external shocks and the disturbances in the consumption associated with this
reduction.

We analyze the choice between a policy in which the price level is kept
constant, a policy in which aggregate output is kept constant, and inflation
targeting. We obtain a criterion under which price stabilization is superior
to output stabilization. Low intertemporal elasticity of substitution of leisure
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and consumption makes price stabilization more attractive. Similarly, a high
elasticity of substitution between different products makes price stabilization
more attractive. A higher price rigidity and lower intertemporal discounting
(i.e., a higher discount factor) makes output stabilization more attractive. These
results are confirmed in our analysis of inflation targeting; the same comparative
statics hold with respect to the intensity to which the central bank should react
to the deviation from the inflation target.

Our optimal policy results are robust in the following sense. If two economists
disagree on whether a utility-maximizing model of consumers or a behavioral
model is correct but both models yield the same predicted behavior, then the
policy maker will have the exact same preferences over policies. Thus, the
policy maker only requires a descriptively accurate model of behavior, not a
literally accurate model. Whether consumers actually maximize a well-defined
utility function is irrelevant to the policy maker as long as the model accurately
describes behavior. We consider this robustness a desirable feature of our
criterion.

The paper continues as follows. In Section 3, we axiomatically derive mutual
information between demand and consumption outcomes as the policy maker’s
objective. In Section 4, we introduce the model which represents the information
received by the policy maker about the effects of the policy. In Section 5, we
derive the freedom of choice obtained from various policies and compare under
which circumstances one or another policy is more desirable. Section 6 presents
avenues for further research and concludes.

2 Literature

Monetary policy at different time periods and with different emphasis of topics
is surveyed by Blanchard, Dell’Ariccia, and Mauro (2010), Blinder, Ehrmann,
Fratzscher, De Haan, and Jansen (2008), Clarida, Gali, and Gertler (1999), Flood
and Isard (1989), Friedman (1988), Goodfriend (2007), Taylor (1999). Following
Rotemberg and Woodford (1997, 1999), utility as a welfare criterion in monetary
policy has been explored in many directions. Most contributions centered
around refining the economic model of behavior. Debortoli, Kim, Lindé, and
Nunes (2019) discusses how to design simple loss functions for monetary
policies which is closest in spirit to our paper. Our analysis suggests a loss
function that is motivated by (in principle) empirically accessible information
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only.
There is a large literature on macroeconomics with boundedly rational

agents. For surveys, see for example Akerlof (2002), Rötheli (2015), Shiller (2003).
Usually, behavioral insights are incorporated in order to improve the predictions
of models. Our approach is instead to ensure that policies remain normatively
convincing even if the policy maker is uncertain about the rationality of agents.
Given that our policy maker maximizes an information-theoretic measure, there
is also an interesting connection to the literature on rational inattention (Sims,
2003), in which these information-theoretic measures arise within the utility
functions of agents. At this point speculative –but interesting– is the idea that
combining such models with an information-theoretic objective of a policy
maker makes it easier to obtain analytical results for welfare as the consumers’
and policy makers’ objectives are more aligned.

Parameter uncertainty (Edge, Laubach, & Williams, 2010; Sala, Söderström,
& Trigari, 2008) and model uncertainty (Coenen, 2007; Giannoni, 2002; Levin &
Williams, 2003) are closely related to the problem we address. In such models,
the policy maker faces uncertainty about the behavioral model but is certain
about the utility scales for each possible model of behavior. We make the
assumption that the policy maker cannot even form beliefs over a parametric
family of utility functions. In contrast, the policy maker has an exact model of
the behavior of consumers.

Uncertainty about the natural rate of interest (and thus the other “natural”
variables) has been historically much discussed in the literature. Orphanides
(2003a, 2003b), Orphanides and Williams (2002) give an overview of the em-
pirical difficulties of dealing with noisy estimates of these “natural” variables
in monetary policies. The Austrian school already very early addressed the
problem of optimal monetary constitutions (Boettke & Smith, 2016; D’Amico,
2007, provide surveys).

Our analysis assumes that the monetary constitution can constrain the cen-
tral banker effectively to avoid time-consistency problems of the form discussed
by (Barro & Gordon, 1983; Kydland & Prescott, 1977). A monetary policy
constitution of course sets not only a policy goal but also creates institutions
that implement the policy. The analyses of Lohmann (1992) and Walsh (1995)
complement ours in this respect.

Within welfare economics, our analysis is closely related to impartial ob-
server theorems Harsanyi (1953, 1955, 1977) and the Harsanyi-Sen debate on
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utilitarianism as a policy criterion (Grant, Kajii, Polak, & Safra, 2010; Sen, 1977).
Weymark (2011) provides a survey on this debate. Our suggested criterion
for the policy maker can be interpreted as a measure of freedom of choice.
For the axiomatic derivation of the measure in a game theoretic context, see
Rommeswinkel (2019). Dowding and van Hees (2009) surveys the freedom of
choice literature.

3 Normative Framework

The main normative framework in economics is welfarism, which aggregates
individual preferences into society’s preferences via the concept of Pareto
efficiency; a state of the world is better than another, if all individuals agree that
the former is at least as good as the latter and at least one individual strictly
prefers the former to the latter. Many remarkable results can be derived from
this rule but its simplicity comes at a cost; it usually does not yield a complete
ordering of policies but only a partial order. In a series of papers, Harsanyi
(1953, 1955, 1977) provided a foundation for a criterion that yields a complete
order, utilitarianism. Harsanyi (1977) assumed that the policy maker has to
make a decision behind the veil of ignorance about which position in society
she will occupy. The policy maker is an expected utility maximizer and the
individuals in each position in society are expected utility maximizers. If the
policy maker subscribes to reduction of compound lotteries, then the policy
maker should maximize the weighted sum of the expected utility functions of
the positions in society. However, this requires that the policy maker knows
the expected utility functions associated with each of the possible positions
in society. Most importantly, the scale of the utility function must be known
for every individual and be interpersonally comparable to other individuals.
Scepticism whether this strong requirement can be fulfilled is warranted. Even
if we were to obtain lottery choice data for all individuals, this lottery data were
consistent with expected utility maximization, and we were able to estimate
the shape of the utility function from the data, still these functions would only
be unique up to separate affine transformations for each individual. Moreover,
as argued by Sen (1977), Grant et al. (2010), Weymark (2011), it may still be
normatively more compelling to aggregate individual utilities using a nonlinear
aggregation function.

We therefore return to Harsanyi’s initial setting but do not allow the policy
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maker to form preferences dependent on unobservable data such as utility
scales – instead, the policy maker must rank policies solely on behavior data.
We assume that the behavior data is given by the demand functions of the
individuals. Behind the veil of ignorance, the policy maker is uncertain about
the individual demand functions and the production possibilities of the econ-
omy. The policy maker has to decide behind the veil of ignorance what kind
of monetary constitution to adopt. Different monetary policies may lead to
different behavior and thus different outcomes for consumers.

The problem of choosing a central bank constitution closely resembles the
assumptions made by the veil of ignorance framework we employ. Central
banks are usually highly independent institutions bound by certain constitu-
tional constraints. When choosing the constitutional constraints, policy makers
face high uncertainty about future shocks to demand and supply. It is therefore
unrealistic to assume that a policy maker will be able to perform a meaningful
utilitarian analysis in which utility scales are known. Instead, we only impose a
set of axioms on the policy maker’s preference over the set of policies P. The set
of policies P is isomorphic to a set of probability measures – each policy P ∈ P

can be represented by a probability measure that describes the expectations of
the policy maker over the behavior of the individuals under the policy P. For
simplicity, we denote both a policy and its corresponding probability measure
by the letter P. In the context of our policy maker’s problem, the probability
measure P represents the policy maker’s information about how agents (includ-
ing consumer, firms, and nature) interact in a market given a fixed monetary
policy.

We assume that there exists a set of outcomes O that consist of the quantities
c ∈ RI

+ of the goods indexed by I consumed by the agent and the hours worked
by the agent, y ∈ R. A generic outcome is denoted by the letter o ∈ O. The
agent reports a demand function x : (p, w) 7→ (c, y) that maps prices and wages
into outcomes subject to the constraint pc ≡

∫
i∈I pici = yw.4 We denote the set

of demand functions of the consumer by X = {(p, w) 7→ (c, y) : pc = yw}, i.e.,
the set of all functions that map prices into quantities subject to the budget
constraint. After the consumer reports the demand function, the Walrasian
auctioneer allocates consumption. Since there may exist uncertainty about

4We derive the policy maker’s preference in a model with only a decision in a single time
period. This is without much loss of generality; in the intertemporal decision problem, we
could replace the demand functions by demand functions over time and consumption outcomes
by sequences of consumption quantities.
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the production conditions, etc., from the position of the policy maker every
policy yields only a probabilistic relationship between the demand and the
outcome. Under the assumption that policies differ meaningfully if and only if
the resulting behavior or outcomes differ, the set of policies can be assumed to
be equal to the set P of finite support probability measures on (X×O) endowed
with the product topology.5

The policy maker forms preferences over the set of policies P. A standard
normative assumption on the policy maker is rationality:

Axiom 1 (Rationality). The policy maker forms complete and transitive prefer-
ences % over the set of policies P.

Continuity is also a standard assumption that guarantees that the policy
maker ranks similar policies similarly.

Axiom 2 (Continuity). The policy maker’s preference is continuous.

Continuity guarantees that there are no “jumps” in the evaluation of policies
in case behavior or outcome probabilities change by a little.

We define policies policies in which the choices of the consumers do not
matter as lotteries. That is, a policy is a lottery if every demand function in
the support of P yields the same conditional probability distribution over con-
sumption outcomes. In other words, in such policies the Walrasian auctioneer
completely ignores the stated demand function and instead randomly assigns
consumption to the consumers according to the marginal distribution P[o].

For lotteries, it is natural to assume the von Neumann-Morgenstern inde-
pendence axiom. Define P′′′ = αP⊕ (1− α)P′′ as the probability mixture such
that P′′′[x, c] = αP[x, c] + (1− α)P′′[x, c].

Axiom 3 (Lottery Independence). For all policies that are lotteries, the policy
maker obeys the von Neumann-Morgenstern Independence axiom, i.e., if P, P′,
and P′′ are lotteries, then P % P′ if and only if αP⊕ (1− α)P′′ % αP⊕ (1− α)P′′

for all α ∈ (0, 1).

The von Neumann-Morgenstern independence axiom is a standard axiom
of rationality for decisions under risk. Note that in contrast to Harsanyi (1977),
we only impose expected utility rationality on the policy maker (which seems

5For simplicity, we introduce the following notational conventions. P[x, o] ≡ P[{(x, o)}], i.e.,
for singletons we omit the set notation. Marginal probabilities are defined as P[o] ≡ P[{(x′, o′) :
o′ = o}] =

∫
x′∈X P[x, o]. The conditional measure uses the | notation, P[o|x] = P[o,x]

P[x] if P[x] > 0.
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obviously desirable) but not on those affected by the policies. The consumers
may in principle follow any behavioral model according to the information of
the policy maker. Moreover, we only impose the independence axiom on the
policy maker in case the consumers have no meaningful choices. If a policy gives
consumers some way of influencing the outcome with their reported demand,
it is not a lottery and lottery independence does not impose restrictions on the
policy maker’s preferences. This allows the policy maker to treat uncertainty
derived from consumer behavior different from uncertainty from external
shocks. For example, suppose the policy maker is indifferent between policies
that dictatorially assign either outcome o or o′. Both policies are (trivial) lotteries
with P[o] = 1 and P′[o′] = 1. Lottery Independence imposes that P ∼ P′ implies
that the policy maker is also indifferent to any policy that randomly assigns
either o or o′ with probabilities α and 1− α, P ∼ αP⊕ (1− α)P′. However, we
permit that the policy maker may strictly prefer a policy in which the consumer
chooses either o or o′ with probability α and 1− α, respectively. Formally, if
P′′[o|x] = 1 and P′′[o′|x′] = 1, and P′′[x] = α = 1− P[x′], then P′′ � P′ ∼ P is
an admissible preference. This is consistent with the idea that the policy maker
may value control of the consumer over outcomes.

For a given policy, two demand functions are indistinguishable in case
they yield the same conditional distribution of consumption. When the policy
maker obtains data about behavior, we assume that all the policy maker can
observe is how likely it is that somebody will obtain a certain consumption
level given a reported demand function. For example, two demand functions
derived from utility functions that are monotone transformations of another
are observationally equivalent. Similarly, two demand functions that only differ
on unavailable goods (for example, goods that are not produced under policy
P) are also observationally equivalent. Formally, in a policy P, two demand
functions x and x′ are equivalent if P[o|x] = P[o|x′] for all o. Two policies
P, P′ are observationally equivalent, denoted by P ≈ P′, if all the matching
equivalence classes of demand functions are equally likely.

Axiom 4 (Observational Equivalence). If two policies are observationally equiv-
alent, then the policy maker is indifferent between the policies.

We illustrate the axiom with an example. Suppose a policy maker prohibits
the consumption of two goods, drugs and rock’n’roll. Consider the demand
function x of a drug addict and the demand function x′ of a rock’n’roll addict.
Suppose that the two demand functions only differ with respect to the con-
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sumption of the two goods (whenever these goods are available). Then, under
the policy in which the policy maker prohibits the consumption of both goods,
the two demand functions are observationally equivalent. This is because we
have empirically no means to distinguish drug addicts from rock’n’roll addicts
– both behave the same way given the prohibition of drugs and rock’n’roll.
According to the Observational Equivalence Axiom, the relative likelihood of a
consumer being a drug addict instead of a rock’n’roll addict P[x]/P[x′] does
not matter for the preference of the policy maker for this policy. Indifference of
two policies directly follows if they both prohibit drugs and rock’n’roll and only
differ on the relative likelihood P[x]/P[x′], but agree on P[x] + P[x′] and P[x′′]
for all other demand functions x′′. It is straightforward to construct similar
examples in which behavior is observationally equivalent because of different
utility scales, randomized allocation of goods, or changes of the underlying
behavioral model.

We next give a formal structure to the idea that in some policies, consumers
have more influence on their outcomes than in other policies. From this, we then
derive an axiom that captures the intuition that the policy maker’s preference
is independent across changes in influence over different demands.

Suppose that the policy maker expects that under a certain policy P, the
consumer reports demand function x or x′ to the Walrasian auctioneer. The two
demand functions are initially observationally distinct. For example, if a fixed
share of the budget is reserved for goods i and i′, then x might allocate the
entire share to i while x′ allocates the entire share to i′. A choice deprivation is
a change in the policy such that the Walrasian auctioneer ignores the distinction
between x and x′ and randomly allocates goods either according to x or x′,
ignoring the actually reported demand.

We assume now that the policy maker’s preference is (ceteris paribus)
independent in identical choice deprivations. Consider two policies that differ
only on the joint probability of outcomes and the demand functions in X\X′.
Assume that in all other respects, the policies are identical. Due to their
differences, one policy may of course be preferable to the other. We assume
that this preference does not change if the policy maker deprives the consumer
of demand choices in X′. That is, if the policy maker deprives the consumer in
two policies of identical choices, then the preference between the two policies
does not change. Formally, we assume the following axiom.

Axiom 5 (Deprivation Independence). The preferences of the policy maker
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are independent of identical choice deprivations; applying an identical choice
deprivation to two policies does not change the preference between these
policies.

We define a sub-policy as the policy obtained from conditioning the prob-
ability distribution P to a subset of the consumption outcomes. Formally, if
P is a policy and O′ is a subset of outcomes O, then the probability measure
obtained by conditioning P on O′ is a subpolicy of P with respect to O′

Axiom 6 (Weak Decomposability). If two policies differ only on their subpolicies
with respect to the outcomes O′, then the preference between the two policies is
determined by the preference on the subpolicies with respect to O′.

Weak Decomposability states that policies can be improved by focusing
on improvements on a subset of the outcomes. This is an assumption that is
implicit in much of economic analysis that finds improvements in localized
contexts to gain overall improvements. For example, in general equilibrium
analysis an intervention in some market can be separately analyzed from other
markets if it does not influence behavior in the other markets. We call this
condition weak because it is only required to hold if outside of the subpolicy all
behavior remains observationally identical; if a change in a subpolicy were to
affect behavior outside of O′, improvements of that subpolicy do not necessarily
yield improvements of the overall policy.

Theorem 1. If the policy maker’s preference fulfills Axioms 1-6, then the policy maker’s
preferences % can be represented by a function of the form

U[P] = ∑
o∈O

P[o]v[o] + r · ∑
x∈X

∑
o∈O

P[x, o] ln
P[x, o]

P[x]P[o]
(1)

where all v[o] and r are real valued parameters to the policy maker’s utility representa-
tion.

The first component of the criterion is an expectation over the policy maker’s
valuation of the outcomes. This can be seen as the policy maker’s instrumental
valuation of choosing some policy over another. The second component is the
mutual information between demand and outcomes. This component will in
the following be called a measure of freedom of choice. The interpretation
is that in the absence of utility information, the policy maker maximizes the
degree to which individuals control their outcomes.
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In our analysis of monetary policy, we assume on the domain of policies
we consider, v[o] is constant and without loss of generality equal to zero. We
assume this for the following reason: v[o] can be interpreted as the utility
function of the policy maker over the outcomes. Normatively, maximizing
the expectation of v[o] is only interesting if v[o] is some heuristic to measure
consumer welfare, for example income. Sensible policies that combine the
maximization of the expected v[o] with the maximization of mutual information
would therefore simply represent an intermediate case between maximizing a
simple welfare measure and the analysis we perform below.

The policy maker’s criterion reduces to:

U[P] = I[x; o] = ∑
x∈X

∑
o∈O

P[x, o] ln
P[x, o]

P[x]P[o]
(2)

This is the mutual information between demand and outcomes. Mutual infor-
mation is a measure of correlation that assumes very little about the functional
relationship between the variables. It therefore measures statistical dependence
not only in case of linear relationships (as the correlation coefficient does).
However, in case of linear relationships of jointly normal distributed variables,
mutual information is ordinally equivalent to the correlation coefficient. More-
over, we are primarily interested in the degree to which consumers control their
consumption outcomes in our model. We therefore assume that two outcomes
are distinct if and only if any of the consumed quantities are distinct. Since we
deal with real valued quantities we replace the measure P by a joint density and
the summation by integration. While the axiomatization holds for finite support
probability measures, the generalization to an infinite support is technically
nontrivial but conceptually straightforward. The mutual information for a joint
density P over consumption c and an arbitrary6 parametrization of the demand
functions is given by:

I(x; c) =
∫

x
P(x)

∫
c

P(c|x) ln
P(x, c)

P(x)P(c)
(3)

4 The Model

The policy evaluation naturally depends on the information of the policy maker
about the impact of the policy on the economy. We assume the policy maker’s

6Mutual information is invariant under homeomorphisms, see Kraskov, Stögbauer, and
Grassberger (2004).
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information is given by a DSGE model with uncertainty about the agent’s
preferences and about the productivity of firms. The policy maker receives the
information in form of probability distributions over demand functions and
outcomes.

4.1 Consumer

At each point in time, the representative agent consumes quantities ci,t of
a continuum of differentiated products i ∈ [0, 1] and provides labor Lt to
firms. We assume that the information about demand can be parameterized
via a utility representation. It is important to note that by this we do not
assume the availability of information about the agent’s utility scale. Any
monotone transformation of the utility function would yield the same policy
recommendation by the mutual information criterion. Therefore, to the extent
that the predicted demand functions of the model agree with the predicted
demand functions observed in the economy, the model will give correct policy
recommendations.7

According to the information of the policy maker, the agent’s preferences
have the following utility representation:

Ct = C(ct) =

(∫
i
ξi;t(ci;t)

σ

) 1
σ

, 0 < σ < 1; (4)

Ut = U(Ct, Lt) =
C1−θ

t
1− θ

− (Lt)φ+1

φ + 1
, 0 < θ < 1, φ > 0; (5)

Vt(U) =
∞

∑
j=0

βt+jUt+j (6)

For each individual good, the policy maker’s uncertainty about the con-
sumer’s preference is represented by a stochastic preference parameter ξi;t ∼
ln N(µξ , σ2

ξ ), determining the agent’s taste for the good in this time period.
The agent then maximizes EtVt(U) by choosing a sequence8 of choice vari-

7In fact, behavior only needs to be observationally indistinguishable from the predicted
demand functions. Thus, a behavioral agent who has no well defined demand function but
who’s behavior is observationally indistinguishable from the policy maker’s perspective can
be treated as maximizing this demand function. This is guaranteed by the Observational
Equivalence Axiom.

8Here and in the following, {. . .}∞
j=0 always denote sequences. We will omit subscripts

whenever the index is implicitly understood.
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ables
{

ct+j, Lt+j
}∞

j=0, where ct = {ci;t}i∈[0,1], subject to the budget constraint:

wtLt + Bt−1Rt−1 + dt =
∫

i
pi;tci;t + Bt, (7)

where wt is the wage level in period t, Bt is the amount of bonds holding at the
end of period t, Rt is the nominal gross return between period t and t + 1, and
dt is the dividend received from firms.

As in standard DSGE models, optimality conditions of the consumption
side can be summarized as follows:

— Good i’s individual demand function:

ci;t =

(
pi;t

Pt

) 1
σ−1

(ξi;t)
1

1−σ Ct (8)

— The Euler equation:

(Ct)
−θ = βEt

[
Pt

Pt+1
Rt(Ct+1)

−θ

]
(9)

— The labor supply function:

Lφ
t

C−θ
t

=
wt

Pt
(10)

where Pt ≡
(∫

i p
σ

σ−1
i;t ξ

1
1−σ

i;t

) σ−1
σ

is the unit price of aggregate consumption Ct.

4.2 Firms

For the production sector, we assume that each individual firm i is a monopoly
supplier with the following linear production function,

qi;t = f (Li;t; δi;t, ∆t) = δi;t∆t(Li;t), (11)

where qi;t is firm i’s output in period t. A firm’s productivity is stochastic in the
sense that it is subject to both a individual-wise shock δi;t, and a economy-wise
shock ∆t in any period. We assume that both δi;t and ∆t are log-normally
distributed with δi;t ∼ ln N(µδ, σ2

δ ) and ∆t ∼ ln N(µδ, σ2
∆). Each firm i demands

Li,t units of labor from the total amount of labor supplied. All firms offer the
same wage to the agent.
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Our model employs Calvo (1983) price staggering; in every time period, each
firm has a probability of 1− α to adjust its price for good i and otherwise uses
the previous period’s price. Under this assumption, aggregate price dynamics
are given by:

Pt =

[∫
i
p

σ
σ−1
i;t ξ

1
1−σ

i;t

] σ−1
σ

=

[
(1− α)

∫
i
p∗i;t

σ
σ−1 ξ

1
1−σ

i;t + αP
σ

σ−1
t−1

] σ−1
σ

. (12)

Notice that in case α = 0, we are in the classical model with flexible prices.
Firm i’s maximization problem at time t when facing the opportunity to

reset its price is:

max
p∗i;t

Et

∞

∑
j=0

αjQt,t+jmt+j(p∗i;t), (13)

where

mt+j(p∗i;t) =p∗i;t

(
p∗i;t

Pt+j

) 1
σ−1

ξ
1

1−σ

i;t+jCt+j −
wt+j

δi;t∆t

(
p∗i;t

Pt+j

) 1
σ−1

ξ
1

1−σ

i;t+jCt+j (14)

denotes its profit in period t + j given the current reset price, and Qt,t+j =

βj
(

Ct+j
Ct

)−θ ( Pt
Pt+j

)
is the stochastic discount factor.

The first order condition of (13) is given by

p∗i;t =
Et ∑∞

j=0 αjQt,t+jP
1

1−σ

t+j ξ
1

1−σ

i;t+jCt+j
wt+j

δi;t+j∆t+j

σEt ∑∞
j=0 αjQt,t+jP

1
1−σ

t+j ξ
1

1−σ

i;t+jCt+j

(15)

=
1
σ

Et ∑∞
j=0(αβ)jΦt+jξ

1
1−σ

i;t+j
wt+j

δi;t+j∆t+j

Et ∑∞
j=0(αβ)jΦt+jξ

1
1−σ

i;t+j

, (16)

where Φt+j ≡ P
1

1−σ

t+j C1−θ
t+j denotes aggregate economic dynamics in period t + j.

Notice that unless α = 0, pi;t cannot be solely expressed by exogenous
variables. We instead rely on log-linearization for the determination of the
optimal reset price. Recall that (8) tells us that ci;t, the variable on which our
freedom measure focuses, depends on both pi;t and Pt. Therefore, we focus on
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the linearization of the relative price pi;t
Pt

around the steady state such that,

δ̂i;t ≡ ln
δi;t

δ̄
≈ δi;t − δ̄

δ̄
= 0,

∆̂t ≡ ln
∆t

∆̄
≈ ∆t − ∆̄

∆̄
= 0,

ξ̂i;t ≡ ln
ξi;t

ξ̄
≈ ξi;t − ξ̄

ξ̄
= 0,

ŵt = w̄, pi;t+j = p̄ = w̄
σδ̄∆̄ , Pt+j = P̄ = p̄ξ̄

−1
σ , and Ct+j = C̄. As a simplifying

assumption, there is no price heterogeneity in the steady state.
Log-linearization of the optimal relative price pi;t∗

Pt
gives:

ln
p∗i;t
Pt
≈ 1

σ
ln ξ̄ +

∞

∑
j=1

Et(αβ)jπ̂t+j (17)

+ (1− αβ)
∞

∑
j=0

Et(αβ)j (ŵt+j − P̂t+j − δ̂i;t+j − ∆̂t+j
)

, (18)

where we define similarly that π̂t+j ≡ ln
Pt+j

Pt+j−1
and P̂t+j = ln

Pt+j
P̄ . Notice that

since δi;t and ∆t are i.i.d across time, we have Etδ̂i;t+j = 0, Et∆̂t+j = 0 for j > 0
according to our definition of δ̄ and ∆̄. We may then simplify (18) as:

ln
p∗i;t
Pt
≈ 1

σ
ln ξ̄ + (1− αβ)(−δ̂i;t − ∆̂t) (19)

+
∞

∑
j=0

Et(αβ)jπ̂t+j + (1− αβ)
∞

∑
j=1

Et(αβ)j (ŵt+j − P̂t+j
)

(20)

Next, we linearize the aggregate price dynamics (12) and get the following
relationship between inflation and optimal relative price:

π̂t =
1− α

α
ln(ξ̄)

−1
σ +

1− α

α

∫
i
ln

p∗i;t
Pt
− (1− α)

ασ

∫
i
ξ̂i;t (21)

This, together with (20), gives the following equation about the inflation and
the productivity shock:

π̂t =
1− α

α
(1− αβ)

(
ŵt − P̂t − ∆̂t −

∫
i
δ̂i;t

)
+ βEtπ̂t+1 −

1− α

α

1− αβ

σ

∫
i
ξ̂i;t

(22)

We employ Uhlig (1996)’s law of large numbers, in which the integral over a
continuum of i.i.d random variables can be treated as the mean of that random
variable. That is,

∫
i δ̂i;t = Et(δ̂i;t) = 0 and

∫
i ξ̂i;t = Et(ξ̂i;t) = 0 according to our
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definition of the steady state. This guarantees that we can ignore the effects of
individual shocks and good-specific shocks on the whole economy. We then
simplify (22) as:

π̂t =
1− α

α
(1− αβ)

(
ŵt − P̂t − ∆̂t

)
+ βEtπ̂t+1, (23)

which is simply the New-Keynesian Philips Curve in terms of real marginal
cost. Finally we plug (23) into (20) and gets the following expression for optimal
relative price:

ln
p∗i;t
Pt

=
1
σ

ln ξ̄ +
α

1− α
π̂t − (1− αβ)δ̂i;t (24)

4.3 Equilibrium

Having determined optimal consumer and firm behavior, we derive equilibrium
conditions in terms of log-linearization. We begin with the labor market. The
labor demand is given by:

L̂d
t =

1
σ− 1

1
σ

ln ξ̄ + Ĉt − ∆̂t −
∫

i
δ̂i;t +

1
1− σ

∫
i
ξ̂i;t +

1− α

σ− 1 ∑
j=0

αj
∫

i
ln

p∗i;t−j

Pt

(25)

= Ĉt − ∆̂t (26)

and labor supply is:

L̂s
t = φ−1 (ŵt − P̂t − θĈt

)
(27)

Equating (26) and (27), and substituting (23) for ŵt − P̂t gives the following
equation:

Ĉt =
1 + φ

φ + θ
∆̂t +

α

1− α

1
φ + θ

1
1− αβ

(π̂t − βEtπ̂t+1) (28)

which, again, is the New-Keynesian Phillips Curve in terms of output. Another
key equation describing the equilibrium is the log-linearized Euler Equation:

R̂t = θEt(Ĉt+1 − Ĉt) + Etπ̂t+1. (29)

Equations (28) and (29) are the non-policy block of this DSGE model. Once
a monetary policy is fixed, (28) and (29) determine the equilibrium inflation
rate π̂t, together with the output level Ĉt and optimal relative price ln

p∗i;t
Pt

accordingly. These are the major components in the expression of ci;t and
therefore are essential in the calculation of our welfare criterion.
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5 Freedom of Choice Under Various Policy Rules

We combine the freedom measure proposed in Section 3 and the monetary
model of Section 4 and evaluate consumption freedom under various mon-
etary policy rules. Notice that the individual’s choice of demand functions
is parametrized by ξi;t, the policy maker’s information over the individual’s
preference for each good. In other words, every set of parameters ξi;t for all
goods specifies a unique demand function. Moreover, after aggregation across
goods, each parameter ξi;t only affects good i and no other good j. Thus,
freedom of choice is represented by the mutual information between ξi;t and
ci;t. The demand function of individual goods (8) tells us that

ci;t(pi;t) =

(
pi;t

Pt

) 1
σ−1

ξ
1

1−σ

i;t Ct, (30)

and we can infer that the individual’s behavior is distorted by fluctuations in
pi;t
Pt

and Ct. From the perspective of the policy maker, the distribution of pi;t
Pt

is a
mixture distribution under the Calvo pricing assumption. For any randomly
picked good, its price duration—the length between current period and its last
reset opportunity—is stochastic from an ex-ante perspective. This means that
pi;t is a mixture distribution whose components are the distributions of the
optimal reset prices of past periods. We denote S as the mixture’s indicator
variable, with the probability of the price duration s being realized being
(1− α)αs for all s ∈N, and

pi;t =



p∗i;t if S = 0

p∗i;t−1 if S = 1
...

...

p∗i;t−s if S = s
...

...

.

It follows immediately that pi;t
Pt

as well as ci;t(pi;t) are also mixture distributions.
As will be shown later, while each mixture component ci;t(p∗i;t−s) belongs to
the same family of probability distributions, the mixture itself in general is
not of any common probability distribution. This makes it difficult to obtain
an analytical expression of the mutual information between ξi;t and ci;t(pi;t)

directly. Ideally, we would like to compute the mutual information between ξi;t

and ci;t(p∗i;t−j) in each state and sum them up linearly. However, by doing so
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we are ignoring the information loss incurred from mixing. More precisely,9

∑
s=0

(1− α)αs I
(
ξi;t; ci;t(p∗i;t−s)

)
= I (ξi;t; ci;t | S) = I (ξi;t; ci;t) + I(ξi;t; S | ci;t).

(31)

One can see that an additional term I(ξi;t; S | ci;t) needs to be subtracted
from the LHS to obtain I(ξi;t; ct;t). As we do not know the distribution of ci;t,
without specifying a particular monetary policy, this adjustment term cannot be
obtained analytically. Fortunately, we can still make some qualitative remarks
about it. Decomposing this adjustment term yields:

I(ξi;t; S | ci;t) = H(S | ci;t)− H(S | ci;t, ξi;t). (32)

The conditional entropy terms depend on the divergence between mixture
components of ci;t.10 We consider the following two cases:

— Low divergence: H(S | ci;t, ξi;t) ≈ H(S | ci;t). Low divergence means
that all component distributions of the mixture are almost identical, and
thus ξi;t affects each component almost identically. That is, ξi;t is almost
independent of S conditional on ci;t. It follows that H(S | ci;t, ξi;t) ≈ H(S |
ci;t).

— High divergence: Under high divergence S is no longer conditionally
independent of ξi;t given ci;t. However, a high divergence leads to a small
H(S | ci;t). This is because ci;t becomes a perfect predictor of S if the
supports of ci;t−s differ greatly for different values of s. It then follows
that I(ξi;t; S | ci;t) = H(S | ci;t)− H(S | ci;t, ξi;t) ≤ H(S | ci;t) is also very
small.

The effect of the support of mixture components (the effect of parameters
that affect macroeconomic stability) is not necessarily monotonic and may be
nonzero for intermediate divergence. However, since the effect is zero in both
extreme cases, we ignore this term as a secondary effect. Qualitatively, this
means that we focus on the disturbances of the relation between demand and
outcomes from price variation at the reset time and ignore variations due to
different reset times.

9See appendix C.
10As shown later, ci;t(p∗i;t−s) have the same mean for all s ≥ 0. Thus when speaking of their

divergence, we refer to the differences between their variances.
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5.1 Constant Price

The divine coincidence discussed by Blanchard and Galı́ (2007) states that mone-
tary policies face no trade-off between price and output gap stabilization in a
new Keynesian model without real rigidities. Here we revisit this neutrality
with a different welfare criterion that does not only depend on inflation and
the output gap. We begin with a price-stabilizing rule in which the inflation
rate is kept zero.

Proposition 1. Under a zero inflation policy rule π̂t = 0,

I(ξi;t; ci;t)
CP = I

(
ξi;t; ci;t(p∗i;t−s)

)CP
=

1
2

ln

1 +

(
1

1−σ

)2
σ2

ξ(
1−αβ
1−σ

)2
σ2

δ +
(

1+φ
φ+θ

)2
σ2

∆


(33)

From the proposition we can see that mutual information is increasing in σ2
ξ

and decreasing in σ2
δ and σ2

∆. First, freedom increases if the diversity of choices
is higher. A low σ2

ξ means that the individual’s preferences over different
goods are almost identical. A high σ2

ξ means that the individual may prefer,
for example, high food consumption and low recreational consumption, or low
food consumption and high recreational consumption.

σ2
δ and σ2

∆ capture the degree of fluctuation in the production of goods. σ2
δ

determines the volatility of the marginal rate of transformation between goods
and σ2

∆ captures the fluctuation of overall output. The more stochastic the
production conditions are, the less control the individual has over the outcomes.
That is, if σ2

δ is high, the individual’s consumption depends more on whether a
particular firm is very productive or not; if σ2

∆ is high consumption depends on
whether the whole economy is very productive or less productive.

Finally, we observe that freedom is increasing in both α and β. α determines
the level of rigidity, that controls the extent to which production conditions
impact prices. When the rigidity is high, relative prices automatically remain
relatively stable and less severe interventions are necessary to achieve price
stability. The previous effect may be further magnified by β, as it captures
the patience of the individual, and more importantly, the firms. Under the
Calvo pricing assumption, firms take profits in future periods into account
when adjusting prices, and patient firms adjust their prices less aggressively
to current production conditions. Once again, stable relative prices distort
consumption less significantly.
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5.2 Constant Output

Having evaluated the case with price-stabilization, we now examine a policy in
which the aggregate output level is kept constant.

Proposition 2. Under a policy rule that fully stabilizes output, Ĉt = 0,

I(ξi;t; ci;t(p∗i;t−s))
CO =

1
2

ln

1 +
σ2

ξ

(1− αβ)2σ2
δ + (1− αβ)2(1 + φ)2

[
1 + s

(
1−α

α

)2
]

σ2
∆

 ,

(34)

and

I(ξi;t; ci;t)
CO ≈

∞

∑
s=0

(1− α)αs I(ξi;t; ci;t(p∗i;t−s))
CO (35)

As we discussed above, whenever we obtain a mixture distribution, overall
freedom of choice can only be approximated. We analyze the comparative
statics of the terms in (34) to determine the effect on the approximation in
(35). In the constant output policy, each parameter acts quite similarly to the
previous case with a few exceptions. First, θ becomes irrelevant since it controls
the intertemporal substitutability of consumption; if output is stabilized, it has
no effect. Second, compared to the constant price equilibrium, an increase in
φ has the opposite effect. In the constant output equilibrium, labor supply
decreases in ∆̂t. In order to incentivize the individual to work enough hours
when the economy is unproductive, the wage level increases. A low level of
intertemporal labor substitution implies that the wage, as well as the aggregate
price level, has to be driven even higher to achieve the same effect on output.
This means that the effect of ∆̂t on inflation is increased for larger φ. From these
differences, we can already foresee that the optimal choice between output and
price stabilization will depend on parameters. We analyze this tradeoff in the
next subsection. In the subsection thereafter, we generalize the analysis to allow
for a continuum of policies between output and price stabilization.

5.3 Comparison of Price and Output Stabilization

The following corollary provides some insight into comparison between output
and price stability as a monetary policy:

Corollary 2.1. I(ξi;t; ci;t)
CP > I(ξi;t; ci;t)

CO if 1−αβ
1−σ > 1

φ+θ .
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The choice between these two policies is equivalent to a trade-off between
their drawbacks—volatile output versus volatile inflation. A change in a pa-
rameter makes a policy more desirable, if it alleviates the drawbacks induced
by that policy. Corollary 2.1 tells us that a constant price policy induces more
consumption freedom than a constant output policy when θ and φ are high.
In contrast, when α and β are high or when σ is low, a constant price policy
would become more desirable. The explanation goes as follows.

Firstly, higher θ and φ means that the individual keeps a smoother con-
sumption pattern over time. When a constant price policy is implemented, the
problem it raises —volatile output— is alleviated. Higher α and β in general
make prices stabler. Thus, when a constant output policy is implemented, the
problem of volatile inflation is less severe under high α and β. Lastly, a low σ

means a lower degree of substitution between goods. This keeps ci;t closer to
Ct; in other words, aggregate output has a stronger effect on the consumption
of a particular good. If Ct is affected by ∆t, as it is in price stabilization, this
directly feeds through to ci;t, leading to lower consumption freedom.

From the perspective of a utilitarian policy maker who knows the consumers’
exact utility function, stabilizing total output is a mistake as the natural level
of output is known. However, when agnostic about the utility function and
only equipped with a model of behavior, the best the policy maker can do is to
minimize external disturbance to the consumers’ choices. For the policy maker
it is irrelevant whether these disturbances originate from external shocks or
from the monetary policy. If stabilizing prices leads to too large fluctuations in
total output, the policy maker may prefer output stability over price stability.

5.4 Inflation targeting

The above two cases deal with rather extreme circumstances in which the
policy maker coercively stabilizes one dimension of aggregate fluctuations.
Empirically, such extreme policies are often unattainable. Instead, both the
monetary policy literature and central banks in the real world consider interest
rate rules preferable. We continue with the analysis of a zero-inflation targeting
rule. Unlike the above two ”constant” policies, an interest rate rule diverts the
impact of aggregate shock into fluctuation of both price level and output.
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Proposition 3. Under an inflation targeting policy rule, R̂t = ρππ̂t, ρπ > 0,

I(ξi;t, ci;t)
IT = (1− α)I

(
ξi;t, ci;t(p∗i;t)

)IT
+

∞

∑
s=1

(1− α)αs I
(
ξi;t, ci;t(p∗i;t−s)

)IT ,

(36)

where

I
(
ξi;t, ci;t(p∗i;t)

)IT
=

1
2

ln

1 +
σ2

ξ

(1− αβ)2σ2
δ + (1− σ)2

(
1+φ
φ+θ

)2
(

ρπ+θ α
1−α

1
1−σ

ρπ+θA

)2

σ2
∆

 ,

(37)

I
(
ξi;t, ci;t(p∗i;t−s)

)IT
=

1
2

ln

1 +
σ2

ξ

(1− αβ)2σ2
δ +

(
1+φ
φ+θ

)2 (
θ

ρπ+θA

)2
Bσ2

∆

 , (38)

with A = α
1−α

1
φ+θ

1
1−αβ and B =

[(
(1−σ)ρπ−θ

θ

)2
+
(

α
1−α

)2
+ (s− 1)

]
.

As it turns out, the optimal policy can be derived using first order conditions
with respect to ρ. We then obtain the following comparative statics of the
optimal intensity ρ∗ with which the policy maker should pursue price stability.

Corollary 3.1. Let ρ∗ denote the policy coefficient that maximize I (ξi;t, ci;t)
IT. We

have ∂ρ∗

∂φ > 0, ∂ρ∗

∂θ > 0, ∂ρ∗

∂σ > 0, ∂ρ∗

∂β < 0, and ∂ρ∗

∂α < 0,

A high ρ represents a stronger emphasis on stabilizing inflation, which in
equilibrium corresponds to lower fluctuations in prices and higher fluctuations
in absolute output. One can easily observe that the effects of parameters
coincide with those in Corollary 2.1, and the same explanation is valid here as
well. The comparison between the constant output policy and constant price
policy therefore yields the same qualitative results as the local comparative
statics of the optimal interest rate rule. A greater emphasis should be placed
on price stability if firms are impatient, the economy has low rigidities, goods
are highly substitutable, and the intertemporal substitutability of consumption
and leisure is low.

6 Conclusion

Two limitations of our study directly lead to possibilities for future research.
In our study, we focused on presenting a parsimonous model that allows to
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gain insight into how our introduced welfare criterion responds to behavioral
parameters and how maximizing this objective differs from maximizing a util-
itarian criterion. It is well known that the model we employed does not fit
behavioral patterns observed in the economy (for example, there is no inflation
persistence). A natural extension is therefore to consider our welfare criterion
in a larger model that fits observed behavior better. Moreover, there is an inter-
esting dichotomy in the effects of inflation on individuals. Small fluctuations in
inflation and output tend to primarily affect consumers, while large fluctuations
tend to affect producers and their employees due to imperfect financial markets.
Our model therefore is no longer valid once inflation and output fluctuations
affect labor market choices via firm bankruptcies. A more detailed analysis
of this would have led us further from the standard new Keynesian model.
Using our welfare criterion on labor market/production choices in addition to
consumption choices is therefore another natural extension of our analysis.

We conclude with a summary of the three main contributions of this paper.
First, we provided a novel framework in which the question of the constitutional
choice for a central bank can be analyzed without relying on cardinally compa-
rable utility functions while still obtaining a complete ordering of the policies.
Second, we showed that the policy maker may put emphasis on absolute output
stabilization and that therefore the presence of the divine coincidence in the
model does not imply that a zero inflation policy is optimal. Third, we obtained
comparative statics for optimal monetary constitutions represented by output
stabilization, price stabilization, and inflation targeting. We found that in an
economy with low price rigidities, impatient firms, highly substitutable goods,
and a low intertemporal substitutability a greater emphasis should be placed
on price stability than output stability.
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Appendices

A Formal Definitions

In this section, we give formal definitions of all the axioms and concepts
introduced in the main text.

We denote the set of demand functions of the consumer by X = {(p, w) 7→
(c, y) : pc = yw}. We assume that there exists a set of outcomes O that consist
of the quantities c ∈ RI

+ of the goods indexed by I consumed by the agent and
the hours worked by the agent, y ∈ R. The set of policies, P can be assumed to
be equal to the set P of finite support probability measures on (X×O) endowed
with the product topology. The preferences of the policy maker are a binary
relation %⊆ P× P.

Expected Utility Rationality

Axiom A.1 (Rationality). For all P, P′, P′′ ∈ P,

— P % P′ or P′ % P, or both.

— If P % P′ and P′ % P′′, then P % P′′.

Axiom A.2 (Continuity). For any two convergent sequences of policies, {Pk}∞
k=1 →

P and {P′k}∞
k=1 → P′, if for all k, Pk % P′k, then P % P′.

To define expected utility rationality of the policy maker, we define lotteries
as follows:

Definition 1 (Lotteries). The set of lotteries is PL = {P ∈ P : ∀x ∈ X, o ∈ O :
P[o, x] = P[o]P[x]}.

Axiom A.3 (Lottery Independence). If P, P′, P′′ ∈ PL, then P % P′ if and only if
αP⊕ (1− α)P′′ % αP⊕ (1− α)P′′ for all α ∈ (0, 1).

Observational Equivalence:

Definition 2 (Observationally Equivalent Demand). Two demand functions
x, x′ are observationally equivalent under policy P, denoted x ≈P x′, if P[o|x] =
P[o|x′] for all o ∈ O.

We can therefore denote the partition of X into sets of observationally
equivalent demand functions as X/ ≈P.
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Definition 3 (Observationally Equivalent Policies). Two policies P, P′ are obser-
vationally equivalent, denoted P ≈ P′ if for all sets X̄ ∈ X/ ≈P, there exists a set
X̄′ ∈ X/ ≈P′ such that P[X] = P[X′] and for x ∈ X̄ and x ∈ X̄′, P[o|x] = P′[o|x′]
for all o ∈ O.

Axiom A.4 (Observational Equivalence). P ≈ P′ implies P ∼ P′ for all P, P′ ∈ P.

Choice Deprivation:

Definition 4 (Choice Deprivation). P′ = DX′P is the result of a choice depriva-
tion if

P′[x, o] = (DX′P)[x, o] =

P[x]∑x′∈X′ P[x′, o], x ∈ X′

P[x, o], else
(39)

Alternatively, choice deprivations can be seen as fulfilling the following
conditions.

— P[o, x] = P′[o, x] for all x ∈ X\X′ and all o ∈ O.

— P[o|X′] = P′[o|X′] for all o ∈ O.

— P[x] = P′[x] for all x ∈ X′.

Based on this definition, we define independence of the preference in identical
choice deprivations as follows.

Axiom A.5 (Deprivation Independence). For any two policies P, P′ ∈ P, if
P[x, o] = P′[x, o] for all x ∈ X′ ⊂ X and all o ∈ O, then,

P % P′ ⇔ DX′P % DX′P′. (40)

Decomposability: Formally, we define a subpolicy as the policy obtained by
Bayesian updating on a set of outcomes O′:

P[x, o|O′] =


P[x,o]
P[O′] o ∈ O′

0, else.
(41)

We introduce the following formal definition of decomposability.

Axiom A.6 (Weak Decomposability). If P[·|O−O′] ≈ P′[·|O−O′], and P[O′] =
P[O′], then: P % P′ if and only if P[·,O′] % P′[·,O′].

Mathematically, this states that common subpolicies can be ignored when
comparing two policies, only the subpolicies that are distinct are relevant for
the preference between the policies.
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B Proof of Theorem 1

Proof. We use the result of Rommeswinkel (2019), Theorem 1, to prove this
result. We first obtain a representation of each policy P as a process (GP, θP) that
Rommeswinkel (2019) defines as combinations of game forms with probability
distributions over strategies. Thus, we map the set of policies into a larger
space of combinations of game forms with finite support probability measures
over mixed strategies on the game form. The cited result then provides a
representation theorem under which we obtain the desired representation. We
therefore need to show that the axioms imposed on the set of policies imply
the axioms of Rommeswinkel (2019) on the set of processes. For this, we need
to show that there is a mapping from policies into the processes, f . From the
preference % on the set of policies we can then define the preference %∗ as
f [P] %∗ f [P′] if P % P′. Under this mapping, the axioms on % in this paper
must then translate into the axioms on %∗ in Rommeswinkel (2019).

For every policy P, we define a game form GP as follows. GP = ({1},X, oP)

where X is the set of demand functions. oP is a mapping from demand functions
into lotteries over outcomes O defined by:

(oP)[c, l] = P[(c, l)|x] (42)

In other words, the lottery resolved in the game form GP after the agent has
chosen demand function x is the conditional probability distribution of the
outcomes given the demand function derived from the policy. Finally, we
assume the following distribution θ over mixed strategies:

θP[1x] = P[x] (43)

where 1x is the probability measure that yields x with certainty. In other words,
in the process the probability measure θ over strategies is such that the player
plays a pure strategy. We now define the mapping f as f [P] = (GP, θP).

The mapping f : P 7→ GP is not surjective, since the set of processes contains
processes with mixed strategies. However, it is one-to-one, since any distinction
in P and P′ results either in distinct oP and oP′ or distinct θP and θP′ . However,
under the Outcome Equivalence axiom of Rommeswinkel (2019), every process
with mixed strategies is indifferent to a process with pure strategies in which
each pure strategy yields the same conditional probability of outcomes via the
lottery oP. Thus, we can uniquely extend %∗ to the set of all processes such that
the Outcome Equivalence axiom is maintained.
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Having obtained a unique preference %∗, we can verify that it fulfills the
axioms Rationality, Continuity, Lottery Independence, Outcome Equivalence,
Strategy Independence, and Subprocess Monotonicity.

Rationality is straightforward. After extending %∗ to processes with mixed
strategies, the relation is complete. Moreover, transitivity of % directly translates
into transitivity of %∗.

Continuity of %∗ requires that the weakly lower {θ′ : (G, θ) %∗ (G, θ′)} and
upper sets {θ′ : (G, θ′) %∗ (G, θ)} of the relation are closed. The Continuity
axiom on % guarantees that the sets {P′ : P % P′} and {P′ : P′ % P} are closed
(all sequences in the upper and lower sets converge and the space is metric).
Given that all {P′ : P % P′} and {P′ : P′ % P} are closed and P 7→ oP and
P 7→ θP are continuous, it follows that all {θ′ : (G, θ) %∗ (G, θ′)} and upper
sets {θ′ : (G, θ′) %∗ (G, θ)} are indeed closed.

Outcome Equivalence of processes with mixed strategies holds by definition.
For all remaining processes, we use Observational Equivalence. Outcome
Equivalence requires that all processes are indifferent in which the equivalence
classes of strategies with the same conditional probabilities of outcomes are
equally likely. For two processes (G, θ) and (G′, θ′), it follows that for any
equivalence class X′ ⊆ X, θ[X′] = θ′[X′]. But then by the definition of f , P[X′] =
P′[X′] where f (P) = (G, θ) and f (P′) = (G′, θ′). Observational equivalence
guarantees that whenever for two policies P, P′, if their equivalence classes of
demand functions (that yield the same conditional probabilitiy of outcomes)
are equally likely, then they are indifferent. It follows from the definition of %∗

that then also (G, θ) and (G′, θ′) are indifferent, proving Outcome Equivalence.
The Lottery Independence axiom on %∗ follows from Lottery Independence

on % and the fact that policies that are lotteries translate via f into processes
that contain no influential player.

Strategy Independence follows directly from Deprivation Independence
after realizing that DM1

1 f [P] = f [DX′P] where M1 = {1x : x ∈ X′}.
Subprocess Monotonicity on %∗ is implied by Weak Decomposability of

% and Outcome Equivalence, which has above been shown to hold. Under
Outcome Equivalence, for every process (G, θ) we can find an outcome equiva-
lent process g[G, θ] such that each action yields only one particular outcome
with certainty. A subprocess is obtained by conditioning the strategies to the
subgame and conditioning θ on the subgame. In processes in which every
action yields a unique outcome, every set of actions is a disjoint subgame,
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since there is only a single player. Therefore, conditioning on subgames is
equivalent to conditioning on sets of outcomes. Therefore, the conditioning on
a subprocess to a subgame containing outcomes O′ is the same as conditioning
a policy to the set O′. If P′ is a subpolicy of P obtained by conditioning on
the set of outcomes O′, then g[ f [P′]] is a subprocess of g[ f [P]] obtained by
conditioning on the subgame of the actions that each yield one of the outcomes
O′ with certainty. Since Weak Decomposability requires that % is monotone in
the ranking of a subpolicy, it follows that %∗ is monotone in subprocesses.

We have therefore shown that the axioms imposed on % imply the axioms
imposed on %∗. By Theorem 1 of Rommeswinkel (2019), it follows that %∗ has
a representation of the form:

U[ f [P]] = ∑
x∈X

θP[x] ∑
c∈O

(oP[x])[c]
(

v[c] + r · ln (oP[x])[c]
∑x′ θP[x′](oP[x′])[c]

)
(44)

and thus % has the desired representation.

C Derivation of (31)

The sum of mutual information between ξi;t and the mixture components
{c∗i;t−j}j∈N can be expressed as:

∑
j∈N

(1− α)αj I(ξi;t; ci;t(p∗i;t−j)) = ∑
j∈N

(1− α)αjH(ξi;t)

− ∑
j∈N

(1− α)αjH(ξi;t | ci;t(p∗i;t−j)) (45)

=H(ξi;t)− ∑
j∈N

(1− α)αjH(ξi;t | ci;t(p∗i;t−j)) (46)

=H(ξi;t)− ∑
j∈N

P(J = j)H(ξi;t | ci;t, J = j) (47)

= H(ξi;t | J)︸ ︷︷ ︸
∵ξi;t |= J

−H(ξi;t | ci;t, J) (48)

=I(ξi;t; ci;t | J), (49)

which is actually the mutual information between ξi;t and the mixture condi-
tional on price duration. Next, by the chain rule of mutual information,

I(ξi;t; ci;t, J) = I(ξi;t; J) + I(ξi;t; ci;t | J) (50)

= I(ξi;t; ci;t) + I(ξi;t; J | ci;t). (51)
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Since I(ξi;t; J) = 0, we have,

I(ξi;t; ci;t) = I(ξi;t; ci;t | J)− I(ξi;t; J | ci;t) (52)

= ∑
j∈N

(1− α)αj I(ξi;t; ci;t(p∗i;t−j))− I(ξi;t; J | ci;t). (53)

D Proof of Proposition 1

Proof. The equilibrium under policy rule π̂t = 0, and the non-policy block
conditions (28), (29) can be summarized as:

Ĉt =
1 + φ

φ + θ
∆̂t (54)

ln
p∗i;t−s

Pt−s
=

1
σ

ln ξ̄ − (1− αβ)δ̂i;t−s, (55)

which can be plugged into (8) to obtain the log-demand function ln ci;t(pi;t),
whose mixture components are:

ln ci;t(p∗i;t−s) =
1

σ− 1

(
ln

p∗i;t−s

Pt−s
−

s

∑
k=1

π̂t−s+k

)
+

1
1− σ

ln ξi;t + ln Ct (56)

=
1

σ− 1

(
1
σ

ln ξ̄ − (1− αβ)δ̂i;t−s

)
+

1
1− σ

ln ξi;t +

(
1 + φ

φ + θ
∆̂t + C̄

)
.

(57)

Note that each mixture component ln ci;t(p∗i;t−s) is a combination of normally
distributed variables, and thus ln ξi;t and ln ci;t(p∗i;t−s) should be jointly normal.
We denote their covariance matrix as:

Σt−s =

 σ2
ξ

σ2
ξ

1−σ V +
(

1+φ
φ+θ

)2
σ2

∆

 , (58)

where V =
(

1−αβ
1−σ

)2
σ2

δ +
(

1
1−σ

)2
σ2

ξ .
The mutual information between two jointly normal random variables N, N′

is given by:

I(N, N′) =
1
2

ln
(

Var[N]Var[N′]
|ΣN,N′ |

)
. (59)
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Additionally, as suggested by Kraskov, Stogbauer, & Grassberger (2004), mutual
information is invariant under homeomorphism. Thus,

I(ξi;t; ci;t) ≈ ∑
s=0

(1− α)αs I
(
ξi;t; ci;t(p∗i;t−s)

)
(60)

= ∑
s=0

(1− α)αs I
(
ln ξi;t; ln ci;t(p∗i;t−s)

)
(61)

=
1
2

ln


σ2

ξ

(
V +

(
1+φ
φ+θ

)2
σ2

∆

)
σ2

ξ

(
V +

(
1+φ
φ+θ

)2
σ2

∆

)
−
(

σ2
ξ

1−σ

)2

 (62)

=
1
2

ln

1 +

(
1

1−σ

)2
σ2

ξ(
1−αβ
1−σ

)2
σ2

δ +
(

1+φ
φ+θ

)2
σ2

∆

 . (63)

E Proof of Proposition 2

Proof. First, plug the policy rule Ĉt = 0 into (28) and solve the difference
equation for π̂t, with

π̂t = −
1− α

α
(1− αβ)(1 + φ)∆̂t. (64)

It then follows that from (24),

ln
p∗i;t−s

Pt−s
=

1
σ

ln ξ̄ − (1− αβ)(1 + φ)∆̂t−s − (1− αβ)δ̂i;t−s. (65)

Mixture components of the log-demand function then takes the following form:

ln ci;t(p∗i;t−j) =
1

σ− 1

[
1
σ

ln ξ̄ − (1− αβ)(1 + φ)∆̂t−j − (1− αβ)δ̂t−j (66)

+
j

∑
s=1

1− α

α
(1− αβ)(1 + φ)∆̂t−s+k

]
+

1
1− σ

ln ξi;t + ln C̄,

(67)

whose covariance matrix with ln ξi;t is:

Σt−s =

 σ2
ξ

σ2
ξ

1−σ V + (1 + φ)2
(

1−αβ
1−σ

)2
[

1 + s
(

1−α
α

)2
]

σ2
∆

 , (68)
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where V =
(

1−αβ
1−σ

)2
σ2

δ +
(

1
1−σ

)2
σ2

ξ . The mutual information between ξi;t and
ci;t(p∗i;t−s) is then

MI(ci;t(p∗i;t−s); ξi;t) =
1
2

ln


σ2

ξ

[
V + (1 + φ)2

(
1−αβ
1−σ

)2
[

1 + s
(

1−α
α

)2
]

σ2
∆

]
σ2

ξ

[
V + (1 + φ)2

(
1−αβ
1−σ

)2
[

1 + s
(

1−α
α

)2
]

σ2
∆

]
−
(

σ2
ξ

1−σ

)2


(69)

=
1
2

ln

1 +
σ2

ξ

(1− αβ)2σ2
δ + (1− αβ)2(1 + φ)2

[
1 + s

(
1−α

α

)2
]

σ2
∆

 .

(70)

F Proof of Proposition 3

Proof. Plugging the policy rule R̂t = ρππ̂t into (28) and (29) gives

π̂t =
−θ

ρπ + θA
φ + 1
φ + θ

∆̂t, (71)

Ĉt =
φ + 1
φ + θ

(
ρπ

ρπ + θA

)
∆̂t, (72)

where A = α
1−α

1
φ+θ

1
1−αβ .

It then follows that by (24),

ln
p∗i;t−s

Pt−s
= ln ξ̄

1
σ − α

1− α

θ

ρπ + θA
φ + 1
φ + θ

∆̂t−s − (1− αβ)δ̂i;t−s (73)

Mixture components of the log-demand function then takes the following form:

ln ci;t(p∗i;t−s) =
1

σ− 1

(
ln ξ̄

1
σ − α

1− α

θ

ρπ + θA
φ + 1
φ + θ

∆̂t−s − (1− αβ)δ̂i;t−s

+
θ

ρπ + θA
φ + 1
φ + θ

j

∑
k=1

∆̂t−j+k

)
+

1
1− σ

ln ξi;t +
φ + 1
φ + θ

(
ρπ

ρπ + θA

)
∆̂t + C̄,

(74)

whose covariance matrices with ln ξi;t are

Σt =

 σ2
ξ

σ2
ξ

1−σ V +
(

φ+1
φ+θ

)2 (
1

ρπ+θA

)2 (
ρπ + θ α

1−α
1

1−σ

)2
σ2

∆

 (75)
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for flexible-price goods (s = 0) and

Σt−s|j 6=0 =

 σ2
ξ

σ2
ξ

1−σ V +
(

φ+1
φ+θ

)2 (
1

ρπ+θA

)2
[(

ρπ + θ
σ−1

)2
+
(

α
1−α

θ
1−σ

)2
+ (s− 1)

(
θ

1−σ

)2
]

σ2
∆


(76)

for non-flexible-price goods (s > 0) respectively. The mutual information
between ξi;t and ci;t(p∗i;t−s) is then:

I
(
ξi;t, ci;t(p∗i;t)

)IT
=

1
2

ln

1 +
σ2

ξ

(1− αβ)2σ2
δ + (1− σ)2

(
1+φ
φ+θ

)2
(

ρπ+θ α
1−α

1
1−σ

ρπ+θA

)2

σ2
∆

 ,

(77)

I
(
ξi;t, ci;t(p∗i;t−s)

)IT
=

1
2

ln

1 +
σ2

ξ

(1− αβ)2σ2
δ +

(
1+φ
φ+θ

)2 (
θ

ρπ+θA

)2
Bσ2

∆

 , (78)

with A = α
1−α

1
φ+θ

1
1−αβ and B =

[(
(1−σ)ρπ−θ

θ

)2
+
(

α
1−α

)2
+ (s− 1)

]
.

G Proof of Corollary 3.1

Proof. We begin the proof with several lemmas that are straightforward to
derive.

Lemma 1.
∂I(ξi;t;ci;t(p∗i;t))

IT

∂ρπ
R 0 if A Q α

1−α
1

1−σ .

Proof. We note that (77) is decreasing in the second summation term in the
denominator of the fraction. Taking the derivative and simplifying directly
yields the result.

Lemma 2. ∀s > 0, ρ∗s = θ
(1−σ)A+1

[
A + 1

1−σ

(
s + α

1−α

)2
]

maximizes I
(

ξi;t; ci;t(p∗i;t−s)
)IT

.

Proof. We note that (78) is decreasing in the denominator of the fraction. Taking
first order conditions and verifying concavity of the objective yields the desired
solution.

Lemma 3. ∂ρ∗s
∂φ > 0, ∂ρ∗s

∂θ > 0, ∂ρ∗s
∂σ > 0, ∂ρ∗s

∂α < 0, ∂ρ∗s
∂β < 0, and ∂ρ∗s

∂s > 0.

Proof. These results follow directly from the solution of ρ∗s .
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Lemma 4. Let ρ∗
s,A≶ α

1−α
1

1−σ

denote the policy coefficient that maximizes I
(

ξi;t, ci;t(p∗i;t−s)
)IT

when A ≶ α
1−α

1
1−σ . We have ρ∗

s,A< α
1−α

1
1−σ

> ρ∗
s,A> α

1−α
1

1−σ

.

Proof. Rearranging A > α
1−α

1
1−σ gives 1−σ

(φ+θ)(1−αβ)
> 1. We can see that the

direction of the inequality changes when φ, θ, σ increases and α, β decreases,
ceteris peribus. ρ∗

s,A< α
1−α

1
1−σ

should then be greater than ρ∗
s,A> α

1−α
1

1−σ

according to

lemma 3.

Lemma 5. Let ρ∗
A≶ α

1−α
1

1−σ

denote the policy coefficient that maximizes I (ξi;t, ci;t)
IT

when A ≶ α
1−α

1
1−σ . We have ρ∗

A< α
1−α

1
1−σ

> ρ∗
A> α

1−α
1

1−σ

.

Proof. For simplicity, we hereafter denote I
(

ξi;t, ci;t(p∗i;t−s)
)IT

as I(∗)s. Since

I (ξi;t, ci;t)
IT does not have an analytical expression and therefore we cannot

directly obtain its partial derivative, we first decompose I (ξi;t, ci;t)
IT as:

I(ξi;t, ci;t)
IT = (1− α)I(∗)0 +

∞

∑
s=1

(1− α)αs I(∗)s (79)

≡ (1− α)I(∗)0 + I(∗)1,∞. (80)

Lemma 6. Let ρ∗
1,∞,A≶ α

1−α
1

1−σ

be the policy coefficient that maximizes I(∗)1,∞ when

A ≶ α
1−α

1
1−σ , then ρ∗

1,∞,A< α
1−α

1
1−σ

> ρ∗
1,∞,A> α

1−α
1

1−σ

.

Proof. By lemma 4 we know that ρ∗
s,A< α

1−α
1

1−σ

> ρ∗
s,A> α

1−α
1

1−σ

∀s > 0. Since I(∗)1,∞

is a additive function of I(∗)s’s, we have ρ∗
1,∞,A< α

1−α
1

1−σ

> ρ∗
1,∞,A> α

1−α
1

1−σ

.

According to lemma 1, I(∗)0 cannot be maximized if A < α
1−α

1
1−σ ; we

then know from (80) that ρ∗
A< α

1−α
1

1−σ

> ρ∗
1,∞,A< α

1−α
1

1−σ

. On the other hand, if

A > α
1−α

1
1−σ , lemma 1 tells us that I(∗)0 is maximized when ρ = 0; thus (80)

tells that ρ∗
A> α

1−α
1

1−σ

< ρ∗
1,∞,A> α

1−α
1

1−σ

. According to Claim 1, we then have:

ρ∗A< α
1−α

1
1−σ

> ρ∗1,∞,A< α
1−α

1
1−σ

> ρ∗1,∞,A> α
1−α

1
1−σ

> ρ∗A> α
1−α

1
1−σ

By the above lemma we know that the policy maker should choose a higher
policy coefficient if A < α

1−α
1

1−σ , namely if D(φ, θ, σ, α, β) ≡ 1−σ
(φ+θ)(1−αβ)

< 1.
To infer how each parameter affects the policy coefficient ρ∗, it is then sufficient
to show how each parameter affects D(. . .) so that the inequality should be
satisfied. We can easily see that ∂D

∂φ < 0, ∂D
∂θ < 0, ∂D

∂σ < 0, ∂D
∂β > 0, and ∂D

∂α > 0,
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which means that higher φ, θ, and σ lead to a higher policy coefficient, and
higher β and α lead to a lower policy coefficient.
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