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Abstract
The paper provides an analogue to Harsanyi’s impartial observer
theorem for game forms. Behind the veil of ignorance, a policy
maker ranks combinations of game forms and information about
how players interact within the game forms. The paper presents
axioms on the preferences of the policy maker that are necessary
and sufficient for the policy maker’s preferences to be represented
by the sum of an expected valuation and a freedom measure. The
freedom measure is the mutual information between players’ strate-
gies and the individual outcomes of the game, capturing the degree
to which players control their outcomes. The measure generalizes
several measures from the opportunity set based freedom litera-
ture to situations where agents interact. This allows freedom to
be measured in general economic models and thus derive policy
recommendations based on the freedom instead of the welfare of
agents. To illustrate the measure and axioms, applications to civil
liberties and optimal taxation are provided.
Keywords: Freedom of Choice, Mutual Information, Entropy, Mea-
surement, Game Form, Process, Income Taxation, Civil Liberties,
Impartial Observer Theorem
JEL Classification: D63, D71, D81

∗National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106,
rommeswi@ntu.edu.tw. I thank presentation participants at the Public Choice So-
ciety Meeting, Royal Economic Society Meeting, European Economic Association
Conference, Stony Brook Game Theory Conference, LSE Choice Group, California
Institute of Technology, Carlos III University of Madrid, Erasmus University Rotterdam,
University of Groningen, Hamburg University, Hitotsubashi University, Karlsruhe Insti-
tute of Technology, Monash University, University of St. Gallen, and National Taiwan
University for their helpful comments. Special thanks go to Martin van Hees, Chris
Hitchcock, Martin Kolmar, Philip Pettit, Clemens Puppe, and Peter Wakker for more
detailed comments on earlier versions of this paper. Financial support by the Swiss
National Science Foundation through grants P1SGP1 148727 and P2SGP1 155407 and
by the Taiwan Ministry of Science and Technology through grants 107-2410-H-002-031

and 108-2410-H-002-062 is gratefully acknowledged.



1 Introduction

Normative judgments are commonly made in economics using one of
two gold standards. The first is welfarism, judging states of society by
Pareto improvements. The second is utilitarianism, judging states of
society by aggregate expected utility. The two criteria lie on opposite
ends of a spectrum; utilitarianism achieves a complete (cardinal) ordering
but relies on utility information that is not directly accessible to the
economist. Welfarism compromises on the existence of a complete
ordering in favor of a criterion that solely relies on more accessible
information about ordinal preferences.

In favor of utilitarianism, Harsanyi’s impartial observer theorem
(Harsanyi, 1953b, 1955, 1977) provides an answer to how a policy maker
should aggregate individual utilities into a welfare criterion.1 Under the
assumptions of rationality of the policy maker, rationality of the affected
individuals, and the acceptance principle, the policy maker evaluates
lotteries according to the weighted sum of the expected utility of the
individuals. However, policy makers may still feel discomfort with apply-
ing utilitarian criteria to policy evaluation.2 Possible reasons are firstly
the failure of utilitarianism to account for procedural considerations,
secondly the difficulty of measuring interpersonally comparable utility
functions from observational data, and thirdly Harsanyi’s requirement
that individuals are rational expected utility maximizers.

In this paper, we provide an impartial observer theorem of insti-
tutional choice that addresses these problems. The first problem is
addressed by modeling institutions as game forms. By allowing for
interactions between players, the policy maker can have procedural pref-
erences, e.g., preferences over who can influence what outcome. The
second problem is addressed by forcing the policy maker to rank institu-
tions based only on the game form and the policy maker’s information
about behavior in the game form. This information is represented as
probability measures on the players’ chosen strategies. Thirdly, no impo-
sitions are made with respect to equilibrium concepts or the rationality of
players in the game. Instead, as a result of the axiomatization, the policy
maker attaches either positive or negative value to players controlling
their outcomes.

1Generalizations of the impartial observer theorem are provided by Karni and
Weymark (1998), Safra and Weissengrin (2003), Gilboa, Samet, and Schmeidler (2004),
Gajdos and Kandil (2008), and Grant, Kajii, Polak, and Safra (2010). See Weymark
(2011) for an excellent discussion of Harsanyi’s theorems and critiques thereof.

2For a discussion of the limits of utilitarianism as a normative criterion for public
policy, see for example Pattanaik (2009).
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We call a game form endowed with the policy maker’s information
about how players will interact a process. The policy maker forms
preferences over processes in compliance with the following axioms.
The Rationality axiom imposes completeness and transitivity of the
preference relation. Continuity and Outcome Equivalence ensure that
similar processes are similarly ranked. Lottery Independence requires
the policy maker to obey the von Neumann-Morgenstern independence
axiom for pure lotteries over outcomes.

The central axioms are Strategy Independence and Subprocess Mono-
tonicity. Strategy Independence deals with situations in which the policy
maker learns that a choice between strategies was actually made by
nature. Thus, instead of a player making a choice between strategies,
instead nature randomly chooses the strategy for the player. The axiom
requires that ceteris paribus, the change of value due to this choice
removal is independent of the other choices being made. For example, if
the policy maker learns that aversion to bitter vegetables is determined
genetically (Wooding et al., 2004), then the resulting change in the policy
maker’s preference is independent of the policy maker’s preference
change resulting from learning that smoking behavior is genetically de-
termined (Erzurumluoglu et al., 2019). Precisely, the policy maker may
not prefer that vegetable choices are determined by nature if and only
if smoking choices are also determined by nature. Instead, the policy
maker needs to make independent judgments about the desirability of
the agent (rather than nature) being in control of strategic choices.

Subprocess Monotonicity requires the policy maker’s preference for a
process to be increasing in the preference of its subprocesses. A subpro-
cess is the process obtained from conditioning the probability measures
on behavior to a subgame. Monotonicity in the value of a subprocess is
only required to hold when the subprocess reaches distinct outcomes
from the remainder of the game. Consider as a simple example the
process in which a single player gets to choose between smoking and not
smoking. According to the information of the policy maker, both smok-
ing and not smoking are equally likely to be chosen. This process has
two trivial subprocesses, one in which the player smokes with certainty
and one in which the player does not smoke with certainty. Suppose the
policy maker prefers to dictatorially assign not smoking to dictatorially
assigning the player to smoke. Then subprocess monotonicity without
the requirement of disjoint outcomes would imply that the substitu-
tion of the subprocess in which the player smokes with certainty by a
subprocess in which the player does not smoke with certainty would
improve the process. However, the resulting process would be the trivial
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choice between not smoking and not smoking. When we substitute a
subprocess by another subprocess it may therefore occur that meaningful
choices are removed if some of the outcomes of the subprocess overlap
with outcomes of the remainder of the process. Therefore, we require
Subprocess Monotonicity only to hold if the outcomes of the subprocess
are disjoint from the remainder of the game.

We obtain a representation theorem according to which the policy
maker’s preferences are additively separable across players. For each
player, the policy maker’s evaluation of the process consists of the sum
of two components. The first component is an expectation across the
valuation of individual outcomes that can be interpreted as the policy
maker’s perceived instrumental value of the process for the player.3 The
second component is the mutual information between the player’s strate-
gies and outcomes. This component is interpreted as a freedom measure;
it measures the degree to which players control their outcomes. Under
the special case of perfect control, the mutual information becomes equal
to the Shannon entropy of the outcomes, a freedom of choice measure
suggested by Suppes (1996).

The present paper therefore brings two literatures together, the litera-
ture on impartial observer theorems and the freedom of choice literature.
The contribution to the impartial observer theorem literature is the con-
clusion that if the impartial observer chooses between institutions in
which players have agency and the policy maker has only information
about behavior, then the policy maker should employ a freedom of
choice measure to evaluate these institutions. Under the assumption that
behavior is a sufficient statistic for utilities, a utilitarian policy maker
would need to justify how any deviation from the axioms imposed in
this paper would help approximate individual utilities from behavior.
The contribution to the freedom of choice literature is a solution to the
problem posed in Pattanaik (1994). Pattanaik (1994) showed that op-
portunity set based measures of freedom of choice encounter problems
when being applied to situations in which agents interact. The difficulty
arises because in situations in which agents interact, opportunity sets
from which agents can freely choose are no longer clearly defined. The
choice of one agent may influence the available opportunities of another
agent and vice versa. This problem has prevented the literature to pro-
vide measures even for a simple exchange economy as Pattanaik (1994)
showed. Yet, it is exactly these cases when agents depend on each other

3Since the policy maker has no information about player’s utilities beyond the
behavior, this expectation is the policy maker’s subjective evaluation of how desirable
the outcomes are, not the player’s.
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to achieve their goals, when they exhibit power over each other, or when
they are coerced by others that the measurement of freedom becomes
interesting. The lack of freedom measures for situations where agents
interact therefore creates an undesirable wedge between the normative
analysis that can be performed by economists and normative perceptions
outside economics.

To show that the measure axiomatized in this paper effectively solves
the problem of measuring freedom when agents interact, we apply the
measure to two examples. The first example is a simplified model of
racial discrimination on buses in Montgomery in the early 1950s. We
analyze a game form representing the interaction between a passenger
and a driver. Using historical accounts, we can inform a policy maker
about how the passengers and drivers interacted. According to the law,
no passenger had to yield their seat to another passenger. However,
black passengers were frequently required to yield their seats for white
passengers. In case they refused to yield their seat, they were arrested
and economically sanctioned. We show how this discrimination leads
to a reduction of freedom of choice. The example also shows why we
include the policy maker’s information about the strategies of the players;
neither a game form in which only the legal actions are included, nor
a game form in which all possible actions are included would correctly
capture the degree of freedom of choice of the players.

The second example is a production economy, a similar problem
to the one posed by Pattanaik (1994). A production economy can be
treated as a process in which the consumers choose demand functions as
fully contingent plans that yield a final outcome, the allocation. In our
model, the policy maker has information about the reported demands
of all players and the production conditions. The information of the
policy maker behind the veil of ignorance is such that the players choose
their demand functions in a non-strategic manner which is the central
property of competitive equilibria. Using the model of a utility maxi-
mizing consumer, the uncertainty about demand can be translated into
uncertainty about a preference parameter without assuming the policy
maker’s knowledge of cardinally comparable utility functions. Further,
the policy maker is uncertain about consumers’ individual productivity
and aggregate shocks. Freedom is measured as the degree to which
preferences determine consumption and labor outcomes. The limitations
to freedom are given by individual’s variations in ability and shocks that
reduce the causal connection between demand functions and consump-
tion outcomes. In this model, we analyze how a policy maker optimally
sets the tax progressivity to maximize freedom.
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The paper continues as follows. Section 2 reviews the literature of
freedom of choice measures, with a focus on the ones related to the
measure developed here. Section 3 begins with an informal description
of the policy maker’s problem and then provides the game theoretic
framework in which the measure is developed. Section 4 axiomatizes
the measure. The application of the freedom measure to a production
economy and the problem of optimal income tax progression is given in
Section 5.

2 Freedom Measures

Philosophers and economists alike have stressed the intrinsic importance
of freedom (e.g., Berlin, 1958; Sen, 1988). To this end, the freedom of
choice literature,4 following the seminal contributions of Pattanaik and
Xu (1990) and Jones and Sugden (1982), provides measures that can be
used to determine the freedom offered by an opportunity set. In the
following, the measures most closely related to the measure proposed
in this paper will be reviewed. All measures will be indexed by the
authors’ last names. We begin with measures based on opportunity
sets. A freedom relation %F holds between subsets C of X. C %F C′ with
C,C′ ⊆ X can be interpreted as ‘the opportunity set C offers weakly more
freedom than the opportunity set C′’. The measure of Pattanaik and
Xu (1990) states that the freedom offered by an opportunity set C is its
cardinality |C|, that is:

Definition 1. Cardinality Measure (Pattanaik and Xu, 1990)
Suppose C,C′ ⊆ X. Then C %F,PX C′ ⇔ |C| ≥ |C′|.

A possible issue of this measure is that it may count alternatives that no
reasonable agent would ever choose. Jones and Sugden (1982) proposed
a measure based on a set of so-called “reasonable” preference relations
R and freedom is measured according to the set of reasonably chosen
alternatives {x ∈ C : ∃R ∈ R : ∀y : xRy}. While the precise definition of
“reasonable” is left open, Jones and Sugden (1982) give as an example
the choice of a prisoner, who can either “stay in the cell” or “get shot”.
Since it would be unreasonable to prefer getting shot to staying in the
cell, the set of reasonably chosen alternatives is the singleton “stay in the
cell”. On the basis of the ideas developed by Jones and Sugden (1982),
Pattanaik and Xu (1998) axiomatize the following measure:

4For surveys of the literature, see Barberà, Hammond, and Seidl (2004), Baujard
(2007), or Dowding and van Hees (2009).
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Definition 2. Reasonable Preference Measure (Jones and Sugden, 1982;
Pattanaik and Xu, 1998)
Suppose C,C′ ⊆ X. Then C %F,JS C′ iff

|{x ∈ C : ∃R ∈ R : ∀y : xRy}| ≥ |{x ∈ C′ : ∃R ∈ R : ∀y : xRy}|.

The measure thus states that the freedom an opportunity set offers can be
measured by the cardinality of the set of reasonably chosen alternatives.

It has been argued that freedom of choice is strongly connected to
diversity. Individuals are more free if they are able to make choices over a
more diverse opportunity set. Two types of diversity have been identified:
Qualitative diversity refers to how distinct elements of a set are and has
been given a formalization in Nehring and Puppe (2008). Quantitative
diversity refers to the relative frequencies with which different objects
are chosen and can for example be measured by the Shannon (1948)
entropy. Suppes (1996) proposes to measure freedom as the entropy of
the relative frequencies with which an agent chooses the alternatives of
an opportunity set:

Definition 3. Entropy Freedom Measure (Suppes, 1996)
FS(C, P) = −∑x∈C P(x) ln P(x) where P(x) refers to the probability with
which an agent chooses element x of the opportunity set C.

The entropy measure increases both in the total number of options
chosen with positive probability and how even the distribution of these
chosen outcomes is. The entropy freedom measure can be seen as a
generalization of the reasonable preference measure if the distribution
P is interpreted as a “degree of reasonability” since the entropy is
increasing in the total number of evenly distributed elements.

The closest in spirit to our model is the literature on freedom of
choice in game forms (Peleg, 1997; Braham, 2006; Bervoets, 2007; Ahlert,
2010). Moving from opportunity sets to a more general framework
was an important conceptual innovation. This moved the quest for a
proper measure of freedom from measuring numbers of alternatives
to measuring control over choice.5 This is important since cases of
actual policy relevance (discrimination, consumer freedom, political
participation) are unlikely purely decision theoretic; difficult policy
tradeoffs commonly involve the freedoms of multiple individuals.

Bervoets (2007) suggests using the maxmin criterion to rank game
forms according to which the game form is ranked by the best element

5For a classification of the richness of possible limitations to freedom by other
individuals, see Carter (2013).
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a player can guarantee to obtain. Ahlert (2008) ranks game forms ac-
cording to the maxmin criterion on the guaranteed level of well-being
provided by a society. Ahlert (2010) phrases the question of a measure of
freedom of choice from the perspective of a policy maker (an approach
which we follow here). In this framework, Ahlert (2010) measures the
sets of alternatives that can be determined and the sets of alternatives
that can be excluded via a lexicographic cardinality rule. The central
difference of the current paper to the work on ranking game forms is
that our policy maker ranks game forms combined with probabilistic
information about players’ behavior. For a stylized example of why
this is important, consider a game in which a player may choose be-
tween actions that deteriorate democratic instutions or improve these
institutions. This decision power of the player may be evaluated very
differently depending on the policy maker’s information about whether
the player will indeed take this action. Therefore, the ranking leaves out
important information in case it relies only on the information contained
in the game form.

A precursor to the idea of measuring freedom via the (probabilistic)
degree to which individuals control their outcomes can be found in the
measure by Braham (2006) which endows game forms with probabilities
to account for interactions between agents. The measure captures the
degree to which an individual i can force a certain outcome x to come
about in the game. With some abuse of notation the measure states:

Definition 4. Game Form Measure (Braham, 2006)
FB(x, i) = P(outcome is x|i chooses x) = P(outcome is x and i chooses x)

P(i chooses x)

where it may occur that P(outcome is x|i chooses x) < 1 because the
actions of the other agents may lead to another outcome, even if i chooses
x. The measure therefore takes up the idea that an agent is free if he can
force certain outcomes to occur. Unlike the measure by Braham (2006),
the measure in the present paper employs probability measures over
agent’s strategies and accounts for multiple outcomes.

We briefly give an overview over the remaining literature. Similar
to the game form approach, Bossert (1998) and Arlegi and Dimitrov
(2009) treat the options offered by opportunity sets as only indicative
of the outcomes the individual can achieve. Qualitative diversity and
characteristics of opportunity sets are analyzed in Rosenbaum (2000), van
Hees (2004), Nehring and Puppe (2008, 2009). The qualitative diversity
of sets of lotteries is measured in Gustafsson (2010), Sher (2018). Puppe
and Xu (2010) and Ryan (2016) add information about essential elements
to opportunity sets. An extension of the opportunity set based approach
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is to also include information on the constraint from which the options
are chosen (Bavetta & del Seta, 2001). Unstable preferences as a source
of preference for flexibility/freedom are considered in (Koopmans, 1964;
Kreps, 1979; Sugden, 2007). The idea of multiple preference relations
as in Jones and Sugden (1982) has been further examined by Sugden
(1998), Nehring and Puppe (1999), and Bavetta and Peragine (2006). An
important topic is also the distribution of freedom between individuals,
for which a survey is given by Peragine (1999). Broader discussions are
given by Carter (1992), Carter (1995), van Hees and Wissenburg (1999)
Bavetta (2004), Carter (2004), Kolm (2010), and Shnayderman (2016).

3 The Model

A policy maker faces a decision problem in which she decides behind
a veil of ignorance between establishing different institutions. The
institutions are modeled as game forms between a set of players over
lotteries of social outcomes. The policy maker has information about how
players will interact in the game form. More precisely, the policy maker
is given a probability measure over the (possibly mixed) strategies of
each player. The combination of a game form with the policy maker’s
information about strategies is called a process. Processes can differ on
the game form, contain identical game forms but different information
about strategies, or differ in both respects. The policy maker forms
preferences over processes. We impose axioms on the preferences of the
policy maker and prove a representation theorem. The representation of
the policy maker’s preferences consists of a sum across players of the
sum of an expectation across outcome and a measure of how informative
strategies are about outcomes. We interpret the first component of the
sum as an instrumental value of the process; it measures the degree
to which the policy maker believes the individuals obtain desirable
outcomes. The second component of the sum is interpreted as a freedom
measure, it measures the extent to which players exercise control over
their outcomes and how many outcomes they control.

The central idea of the axiomatization is that nature-driven uncer-
tainty is valued differently from agent-driven uncertainty by the policy
maker. For pure lotteries in which no player is influential, the policy
maker obeys the classical independence axiom. When players are in-
fluential, uncertainty about their strategies is not commensurable with
uncertainty from lotteries. The reason is that strategies allow players
to express their individual likes and dislikes for various outcomes. For
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example, the policy maker may find it more compelling that the colors
of a players bedroom walls depend on strategic uncertainty about that
player’s behavior and not the mixed strategy of another player or a lot-
tery. To account for this, each social outcome is a combination of individual
outcomes of the players.

The decision problem resembles that of an impartial observer theo-
rem (Harsanyi, 1953a, 1977, 1955). The framework used in this paper
distinguishes itself in several aspects, however. The impartial observer
theorem makes use of extended lotteries in which the decision maker
faces uncertainty about her identity in society and uncertainty about
which outcome is implemented. Our policy maker instead faces un-
certainty about how the individuals in society interact with another.
Allowing for interactions between players allows us to account for con-
cerns of procedural fairness. The impartial observer theorem requires
the policy maker to know the expected utility functions of the different
positions in society. In practice, the information problem that needs to
be solved to implement utilitarianism is infeasible; we would need to not
only derive the expected utility functions for every member of society
but also find the proper scale for cardinal comparisons.6 In place of
utility information, our policy maker only needs to acquire information
about the strategic choices of the players in the game. This information
can in principle be given by a dataset on the behavior of players or by a
theoretical model. Realistically obtainable information about behavior
therefore permeates our policy maker’s veil of ignorance while inaccessi-
ble utility information does not. Finally, the impartial observer theorem
makes assumptions about the rationality of preferences not only of the
policy maker but also of all individuals affected by the policy. While our
framework imposes rationality conditions on the policy maker, it does
not impose these on the players of the game form.

3.1 Notation

f , g, h denote generic functions f : x 7→ f [x]. f |Z denotes the restriction
of f : X → Y to the subset Z ⊆ X of the domain. If f : X → Y, then
f [Z] = {y ∈ Y : ∃z ∈ Z : y = f [z]} is the image of the function of the

6The reader may imagine having estimated that two individuals have distinct
constant relative risk aversion utility functions over money. At which monetary level
should the marginal utility of income be identical? The problem is worsened in case
one gives up the commensurability of outcome and identity lotteries. In this case, the
utilitarian must find the correct continuous monotone transformations of the expected
utility representations, (Grant et al., 2010).
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set Z ⊆ X. When a set X is understood as a subset of Y, then XC = Y\X
denotes the complement.

If S is a topological space, then ∆S denotes the finite support prob-
ability measures over the Borel sigma algebra of S. The support of
ν ∈ ∆S is denoted by supp[ν]. In case of a finite set S, we assume
the discrete topology and therefore ν ∈ ∆S means the domain of ν is
the power set 2S. We will frequently simplify notation by writing ν[s]
instead of ν[{s}] for singletons. If f is a measurable mapping from S

to S′, then f #µ is the pushforward measure fulfilling f #µ[s] = µ[ f−1[s]]
for all s ∈ S′. If s ∈ S, then 1s ∈ ∆S fulfills 1s[s] = 1. If ν ∈ ∆S, S′ ⊂ S,
and ν[S′] > 0, then the conditional probability measure denoted by ν|S′
fulfills (ν|S′) [S′′] · ν[S′] = ν[S′′] for S′′ ⊆ S′.

For any two probability measures ν ∈ ∆S, ν′ ∈ ∆S′, we can assign a
product measure ν⊗ ν′ ∈ ∆(S× S′), such that (ν⊗ ν′)[s, s′] = ν[s]ν′[s′].
For finitely many products of a set of measures, D = {ν1, ..., νn}, we can
write

⊗
ν∈D ν = ν1 ⊗ ...⊗ νn.

A space of probability measures is a set endowed with the product
topology. Therefore, it is meaningful to write ∆∆S as the space of finite
support probability measures over finite support probability measures
over S.

For any two probability measures over the same set ν, ν′ ∈ ∆S, we can
define the mixture of the two probability measures αν⊕ (1− α)ν′ ∈ ∆S

as the probability measure that fulfills for all s ∈ S: αν⊕ (1− α)ν′[s] =
αν[s] + (1− α)ν′[s]. For a probability measure α ∈ ∆S′ and a one-to-one
function f : S′ → ∆S, we define

⊕
s′

α[s′] f [s′] = α[s′1] f [s′1]⊕ (1− α[s′1])
(

α[s′2]
1− α[s′1]

f [s′2]⊕ . . .
)

(1)

In other words, f and α can together be interpreted as a two stage
probability measure over S and the measure

⊕
s′ α[s′] f [s′] is its reduction

to a single stage.

3.2 Game Forms

Let N be a set of players. We assume there exists some universal set
of social outcomes O. Outcomes are denoted by lowercase letters from
the end of the alphabet, x, y, z. For each player i, there exists a set Oi of
individual outcomes xi, . . . that are a partition of O. If the policy maker
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is of the opinion that the difference in outcomes x and y are irrelevant7

for player i, then the individual outcome of player i is the same in both
outcomes, i.e., ∃xi ∈ Oi : x, y ∈ xi. For simplicity, we assume that all
combinations of individual outcomes are possible, i.e.,

⋂
i∈N xi ⊆ O.

The set of game forms with possible outcomes O is denoted by G[O].
We define strategic game forms as follows.

Definition 5 (Strategic Game Form). A strategic game form G ∈ G[O] is
a tuple (N,A, o) where

— N = {1, ..., n} is a finite set of players.

— A = ∏i∈N Ai is the set of action profiles.

— Ai is the finite set of actions of player i.

— o : A → ∆O is the outcome function specifying for each action
profile a lottery.

Lowercase letters from the beginning of the alphabet a, b, c, . . . ∈ A

always denote action profiles, action profiles with a subsript, ai ∈ Ai
denote an action taken by player i. To avoid the awkward notation
(a1, ..., ai−1, ai, ai+1, ..., an) where aj ∈ Aj, we employ the notation (ai, a−i)
for such tuples. Each action profile results in a lottery over outcomes. In
the following, G always denotes an arbitrary strategic game form with
the same set of players N.

Example. To clarify the various concepts used and defined in this paper,
we employ an example of discrimination. The game form8 is shown in
Table 1. In it, player 1, decides how to get to work. Each action is a fully
contingent plan. She can choose to walk, a5

1, in which case she arrives
with certainty at work, outcome z. Alternatively, she can attempt to take
the bus, a1

1, . . . , a4
1. The driver player 2, decides whether to reject her as

a passenger, a3
2, in which case player 1’s choice of strategies between

a1
1, . . . , a4

1 determines whether she walks and arrives delayed at work, x,
or cancels the journey, y. If player 1 does not get rejected by the driver,
she is requested to give up her seat to a white passenger. With actions

7Ahlert (2010) instead employs a perception function that distinguishes social states
according to whether individuals perceive the states to be different. Instead of making
this a question of perception, we make this a normative issue to be determined by the
policy maker.

8A similar game form is given in Mailath, Samuelson, and Swinkels (1993). The
interpretation of the game form is a much simplified account of the segregation laws
and discriminatory practices of bus lines in Montgomery, Alabama up to 1956. For
historical accounts, see Phibbs (2009), Burns (2012), Theoharis (2015).
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a1
1 and a2

1 she yields her seat to the white passenger and stands for the
remainder of the bus ride, u. With the actions a3

1 and a4
1 she insists on her

right to sit. In case the driver acts lawfully, a1
2, player 1 gets to sit during

the bus ride, v. In case the driver calls the police, a2
2, player 1 gets arrested

and loses her job, w. We note that in this game there is no uncertainty

lawful police reject
a1

2 a2
2 a3

2
bus, yield, walk a1

1 u u x
bus, yield, cancel a2

1 u u y
bus, refuse, walk a3

1 v w x
bus, refuse, cancel a4

1 v w y
walk a5

1 z z z

Table 1: Montgomery Bus Game Form

about the outcomes after the players’ moves. Therefore, for example
o[a1

1, a1
2] = 1u. We must also determine what the relevant distinctions in

outcomes are. Based on the above interpretation, we may for example
be concerned about the freedom of choice of player 1 about whether and
how she commutes to work. This means that u, v, etc.., will generally
be considered normatively distinct outcomes for player 1 by the policy
maker and therefore belong to different elements of the partition O1.
Some policy maker perhaps considers the delay from being rejected from
riding the bus negligible and considers the outcomes z and x equivalent
for player 1. Another policy maker may find that the driver’s outcomes
are all identical O2 = {{u, v, w, x, y, z}}. In any case, these normatively
imposed distinctions must be made explicit.9 End of example.

In some game forms, duplicate actions may exist. Generally, adding
or removing such actions should have no effect on the interaction repre-
sented by the game form. We therefore require a notion of strategically
equivalent actions.

Definition 6 (Strategically Equivalent Actions). Two actions ai, a′i ∈ Ai
are strategically equivalent given B−i ⊆ A−i, denoted ai ≈B−i a′i, if for
all a−i ∈ B−i we have that o[ai, a−i] = o[ai, a−i]. ai, a′i are strategically
equivalent, ai ≈ a′i, if they are strategically equivalent given A−i.

We now make definitions that allow us to remove all such duplicate
actions from a game form. Denote by Ai/≈ the quotient set with respect

9As already argued by Sugden (2003), any measure of freedom of choice ultimately
depends on the way the outcome space is partitioned. We will see in Section 5 how
different partitions of the outcome space yield different policy objectives.
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to the equivalence relation ≈, i.e., all actions ai ∈ Ai are replaced by
their equivalence class {a′i ∈ Ai : ai ≈ a′i}. With some abuse of notation,
denote by A/≈ = ∏j Aj/≈ the profiles resulting from replacement of all
strategically equivalent actions by their equivalence class with canonical
projection f : a 7→ {a′ ∈ A : ∀i ∈ N : ai ≈ a′i} from action profiles to
their respective equivalence class.

Definition 7 (Reduced Form). For a strategic game form G = (N,A, o),
the reduced strategic form G/≈ is given by (N,A/≈, f ◦ o).

Throughout the paper, we assume the game form is given by the
reduced form.

Example. Consider the Montgomery bus game with the adjustment that
x = y. In this case, the reduced form is given in Table 2. End of example.

a1
2 a2

2 a3
2

{a1
1, a2

1} u u x=y
{a3

1, a4
1} v w x=y

a5
1 z z z

Table 2: Reduced Form Example

Information is an important aspect in strategic interactions between
individuals. Commonly, information sets are defined in extensive form
games. Mailath et al. (1993) show that information sets can also be
defined in strategic game forms in a corresponding manner.

Definition 8 (Normal Form Information Set). In a reduced normal form
G, the set B ⊆ A is a normal form information set of player i if

B = Bi ×B−i (2)
∀ai, a′i ∈ Bi, ∃a′′i ∈ Bi : ai ≈B−i a′′i , a′i ≈A−i\B−i

a′′i . (3)

It follows immediately that every profile a ∈ A, is an information set
for every player. If a set of actions is an information set for every player,
then it is a subgame:10

Definition 9 (Normal Form Subgame). B ⊆ A is a normal form subgame
if it is a normal form information set for each player.

10Formally, B by itself is not a game form. However, together with the original game
form G, B uniquely determines the game form (N,B, o|B). We follow Mailath et al.
(1993) in calling B a normal form subgame.
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Example. In Table 1, the set {a1
1, . . . , a4

1} × {a1
2, a2

2} is a subgame. We
verify (3) of Definition 8 for the two actions a1

1 and a4
1. The condition

requires that there is an action that agrees with a1
1 on the subgame

and with a4
1 elsewhere. This action is given by a2

1, as it is strategically
equivalent with a1

1 given {a1
2, a2

2} and strategically equivalent with a4
1

given {a3
2}. Intuitively, this means that the action player 1 plays on

the subgame can be independently chosen from the action outside the
subgame. It is straightforward to check the remaining actions in a
similiar manner. End of example.

In line with Mailath et al. (1993), Theorem 3, the relation between nor-
mal form subgames with extensive form subgames can be summarized
as follows. For every normal form game G with a normal form subgame
G′, there exists an extensive form game E with a reduced normal form
G that contains an (extensive form) subgame E′ with a reduced normal
form G′. Therefore, if the reduced normal form contains all strategi-
cally important features of an extensive form (Thompson, 1952; Elmes &
Reny, 1994), then employing normal form subgames and normal form
information sets is without loss of generality in the axiomatics. Since
the policy maker also has information about the behavior in the game
form, this does not commit us to assuming that individual’s behavior is
uninfluenced whether the game is perceived by players as an extensive
form or in its reduced normal form. If the policy maker has information
that the players perceive the game in a particular extensive form and
act accordingly, then this should be reflected in the information about
behavior.

We conclude this section with a summary of the concepts that have
been introduced. We began by defining game forms in which after all
players simultaneously chose an action, a lottery resolved which outcome
occurred. Next, we defined strategic equivalence and the reduced form
which equates all strategically equivalent actions. We furthermore used
the notion that actions can be strategically equivalent with respect to
some actions taken by other players to define information sets and
subgames without making use of the extensive form.

3.3 Processes

The information contained in a game form is not always sufficient to
make moral judgments. For example, a utilitarian policy maker would
in addition like to know the utilities and the expected behavior of
individuals. We will not permit utility information behind the veil of
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ignorance but information about player’s behavior only. We define the
strategies of the players as follows.

Definition 10 (Mixed Strategy). A mixed strategy of player i, µi ∈ ∆Ai
is a finite support probability measure over the actions, Ai.

Definition 11 (Strategy Profile). A strategy profile µ = ∏i∈N µi specifies
a strategy for each player.

Behind the veil of ignorance, the policy maker is uncertain about
the choice of strategies of the player. This uncertainty is reflected in the
behavior of the player. We therefore define the information of the policy
maker as probabilistic beliefs.

Definition 12 (Information about Strategies). The information of the pol-
icy maker about the strategies of player i, θi ∈ ∆∆Ai is a finite support
probability measure over the strategies, ∆Ai. The policy maker’s infor-
mation about strategy profiles is given by θ = (

⊗
i∈N θi) ∈ ∏i∈N ∆∆Ai.

It is noteworthy that the information about strategies exhibits in-
dependence across players. This implies that the description of the
interaction provided by the game form is comprehensive in the following
sense. According to the information of the policy maker, the players have
no way of correlating their actions in any way that is not described by
the game form. As we are interested in process value, this is important
as the following example shows.

Example. Suppose in the Montgomery bus game form we observe that
according to the information of the policy maker, player 1 plays the pure
strategy a5

1 if and only if player 2 plays a2
2 and player 1 plays a3

1 if and
only if player 2 plays a1

2. In this case, it seems that player 1 has perfect
control over whether she walks, z, or sits on the bus, v. Similarly, player
2 seems to have perfect control over these two outcomes as well. This
cannot be the whole story of the interaction between the two players,
however. To coordinate their actions, they must either rely on a signal
from nature (let’s say weather) or one player is able to condition on the
other’s strategy. Consider the first scenario: on days with hot weather,
player 1 walks and the driver is in a foul mood and would discriminate
if player 1 tries to enter the bus. On days with cool weather, player 1

takes the bus and player 2 is in a good mood and does not discriminate.
Alternatively, consider the second scenario: player 1 observes whether
today’s driver is known to discriminate and avoids taking the bus. If
player 2 observes that today’s driver is known not to discriminate, she
takes the bus. The policy maker may want to judge the two situations
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differently. However, only knowing that the actions are correlated but
not the reason for the correlation makes it impossible to determine
which of the two scenarios is correct. To avoid this issue, the probability
measure over strategy profiles is a product measure of the probability
measures over individual strategies. End of example.

We now define the primitives over which the policy maker has pref-
erences. These primitives determine what the policy maker sees behind
the veil of ignorance. The policy maker forms preferences over processes
from a set of processes defined as follows.

Definition 13 (Process Space). The process space P is defined as

P = {(G, θ) : G = (N,A, o) ∈ G[O], θ ∈ ∆∆A}. (4)

Thus, processes are game forms endowed with information about
strategies and the set P contains all possible processes given the set of
outcomes O.

Not all outcomes that are within a game form are reached with
positive probability. While we have already introduced the support of
measures, we now introduce the support of processes as the individual
outcomes reached with positive probability.

Definition 14 (Outcome Support). In a process (G, θ), the support of an
action profile a ∈ A from the perspective of i ∈ N is defined as:

suppi,(G,θ)[a] = {xi ∈ Oi : xi ∩ supp[o[a]] 6= ∅} (5)

We denote suppi[G, θ] = suppi,(G,θ)[
⋃

µ∈supp[θ] supp[µ]] as the support of
the process from the perspective of player i.

Example. Consider the outcomes that only differ by whether player 1

gets to sit during the bus ride, {v}, stand during the bus ride, {u},
gets arrested, w, or does not ride the bus, {x, y, z}. If the policy maker
believes with certainty that player 1 plays either one of the actions a1

1 and
a2

1 , then the support from the perspective of player 1 is {{u}, {x, y, z}}.
End of example.

In the following, we define useful concepts related to processes.
We introduce the following notation for the probability measure over
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outcomes derived from a process (G, θ):

ρG,θ =
⊕

µ

θ[µ]
⊕

a
µ[a]o[a] (6)

ρG,θ|µi =
⊕
µ−i

θ−i[µ−i]
⊕

ai∈Ai,a−i∈A−i

µi[ai]µ−i[a−i]o[ai, a−i] (7)

For an outcome x, ρG,θ[x] thus denotes the probability of how likely it
is that outcome x occurs in a game form G with information θ about
the strategies played by players. The conditional probability given a
particular strategy is defined analogously.

We now extend our notion of strategic equivalence to take into ac-
count the information θ of how players choose their strategies. For
notational convenience, we again11 use the symbol ≈.

Definition 15 (Outcome Equivalent Strategies). Two strategies µi ≈G,θ µ′i
of player i are outcome equivalent in (G, θ) if ρG,θ|µi[oi] = ρG,θ|µ′i[oi] for
all oi ∈ Oi.

Thus, two strategies are outcome equivalent for player i, if their
conditional probability over i’s individual outcomes is identical.

Example. In the Montgomery Bus Game, player 1’s mixed strategies µ1 =
1
21a1

1
⊕ 1

21a3
1

and µ′1 = 1
21a2

1
⊕ 1

21a4
1

are outcome equivalent irrespective of

player 2’s behavior. Moreover, 1a1
1
≈G,θ 1a2

1
if player 2 plays a3

2 with zero
probability in (G, θ). Note that if O2 partitions the outcomes of the game
into the trivial partition O2 = {{u, v, w, x, y, z}}, then all strategies of
player 2 are outcome equivalent for player 2. End of example.

Definition 16 (Outcome Equivalent Processes). Two processes (G, θ), (G′, θ′)
are outcome equivalent for player i, (G, θ) ≈i (G′, θ′), if there exists a bi-
jection bi : (∆Ai)/≈G,θ → (∆A′i)/≈G′,θ′ , such that for all Mi ∈ (∆Ai)/≈:
θi[Mi] = θ′i [bi[Mi]], and for all µi ∈Mi, µ′i ∈ bi[Mi], xi ∈ Oi:

ρG,θ|µi[xi] = ρG′,θ′ |µ′i[xi]. (8)

Two processes (G, θ), (G′, θ′) are outcome equivalent, (G, θ) ≈ (G′, θ′), if
they are outcome equivalent for all players.

In other words, processes are outcome equivalent if the (equivalence
classes of) strategies with the same conditional probability over individ-
ual outcomes can be matched such that their total probability according
to θ, θ′ are identical.

11It will always be clear from context what type of equivalence is meant.
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We now define the corresponding notion of a subgame for a process.
If a game has a subgame, then conditioning the probabilistic beliefs of
the policy maker over strategies to that subgame results in a subprocess.

Definition 17 (Subprocess). For a process (G, θ), let B = ∏i∈NBi be a
normal form subgame of G. Then (G, θ)|B = ((N,B, o|B), θ′) defined by

∀i ∈ N, µi ∈ ∆Ai : θ′i [µi|Bi] =
θi[µi]µi[B]

∑µ′i
θi[µ

′
i]µ
′
i[B]

(9)

is a subprocess of (G, θ) on B.

Example. Suppose player 1 plays either a mixed strategy involving ac-
tions a5

1 and a1
1 or plays the pure strategy 1a5

1
according to the information

of the policy maker. If the policy maker wants to separately analyze
the subgame {a1

1, . . . , a4
1} × {a1

2, a2
2}, the policy maker has to take into

account that the probabilities of the two strategies change; the second
strategy never reaches the subgame and therefore the first strategy is
played in the subprocess with certainty. Moreover, the mixed strategies
must be conditioned on the subgame; in the first strategy, a1

1 is played
with certainty on the subgame. End of example.

Using the above definition of Outcome Equivalence, we can define
what it means that two processes (G, θ), (G, θ′) agree outside a subgame
B ⊆ A. Suppose for some b ∈ B,

o′′[a] =

{
o[a] a ∈ A\B
o[b] a ∈ B.

(10)

The two processes (G, θ), (G, θ′) agree outside the subgame B if ((N,A, o′′), θ)
≈ ((N,A, o′′), θ′). Therefore two processes agree outside a subgame B

if making all actions on this subgame equivalent yields two outcome
equivalent processes.

In some cases, we may want to capture the uncertainty the policy
maker faces about what process will arise from the policy. We therefore
define mixtures of processes as follows.

Definition 18 (Process Mixture). The mixture of two processes, (G, θ)
and (G′, θ′), is defined as α(G, θ) ⊗ (1 − α)(G′, θ′) = ((N,A′′, o′′), θ′′)
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with

A′′ =A×A′

A′′i =Ai ×A′i
o′′[a, a′] =αo[a]⊕ (1− α)o′[a′]

θ′′[µ⊗ µ′] =θ[µ]θ′[µ′]. (11)

The mixture weight α represents how likely the policy maker believes
it is that the process (G, θ) will be played. We can alternatively interpret
this as nature determining which process will be played after the players
have determined their strategies in each process independently.

Example. The policy maker may be informed by data that strategies are
race-dependent. According to the data, if player 1 is black, she plays the
pure strategy 1a1

1
with certainty, if she is white, 1a3

1
instead. Player 2 plays

1a1
2

with certainty. Let the corresponding processes be (G, θ) and (G, θ′).
Since behind the veil of ignorance, race is determined by nature’s lottery
according to some proportion α, the process α(G, θ) ⊗ (1 − α)(G, θ′)
represents the policy maker’s beliefs of the overall process after receiving
the information that strategies are race dependent. End of example.

In the axiomatization, we will analyze changes in processes that
involve informing the policy maker that a strategic choice was actually
determined by nature. In some initial process, the policy maker is
informed that some player makes a choice between strategies. Now
imagine informing the policy maker with the exact same information,
except that according to the new information, the player did not choose
among two strategies but instead a random process (nature) made this
choice. We call the change from the initial to the latter process a choice
removal.

Definition 19 (Choice Removal). Suppose Mi ⊆ supp[θi] is a set of
strategies of player i. Then DMi

i (G, θ) randomizes the choice among
these strategies.

DMi
i (G, θ) =

⊕
µ∈Mi

θ[µ]

θ[Mi]

(
G, θ−i ⊗

(
θ[Mi]1µ ⊕ (1− θ[Mi])θ|MC

i

))
.

(12)

If all strategies of a player are randomized, we denote D
Aj
j = Dj. The

choice removal for all players in set N′ ⊆ N is denoted by DN′ and
D−N′ = DN\N′ .
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We interpret the above notation as follows. The process inside the
brackets is the mixed belief of the policy maker whether a particular
strategy µi ∈ Mi is being played or a strategy outside Mi is being
chosen. The latter choice among strategies is made with the same
probabilities with which the strategies outside Mi were chosen in (G, θ).
Via nature’s randomization over processes, nature determines which of
these strategies µi ∈Mi is chosen.

Example. We continue the example of a process mixture. Suppose ini-
tially, the policy maker has no data on race being the determining factor
in the strategic choice of player 1. Instead, the policy maker falsely be-
lieves that with probability α, player 1 chooses 1a1

1
and with probability

1− α, player 1 chooses 1a3
1
. In this case, the policy maker attributes

the choice therefore to player 1. Let this process be denoted by (G, θ′′).
Then Di(G, θ′′) = α(G, θ)⊗ (1− α)(G, θ′). In other words, the difference
between the process in which race determines the choice of the player
and the process in which the choice is of player 1’s own volition is the
choice removal operation. End of example.

Some game forms are effectively lotteries from the perspective of
some players. Such players have no meaningful strategic choice and
therefore removing their strategic choice leaves an outcome equivalent
process. We use this idea to capture whether a player is influential or
not.

Definition 20 (Influential Players). A player i is influential in process
(G, θ) ∈ P if Di(G, θ) 6≈ (G, θ). The set of all influential players is
{i ∈ N : Di(G, θ) 6≈ (G, θ)}.

We conclude this section with a summary of introduced concepts.
We defined processes as combinations of game forms with probabilistic
information of the policy maker about the strategies players choose.
Next, we introduced outcome equivalence as a way to determine simi-
larity of player’s strategies across game forms. Further, we introduced
subprocesses as the corresponding concept to subgames. Finally, the
choice removal removes agency from a player and hands it to nature.
Choice removal allows us to express whether a player is influential or
not.

4 Axiomatization

We phrase the problem of finding a measure of freedom as a problem
of finding a representation of the policy maker’s preference relation %
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over processes P. Behind the veil of ignorance, the policy maker must
decide which process to implement for the players and forms preferences
according to certain desirable criteria described below. Under these
criteria, we then obtain a representation defined as:

Definition 21 (Representation). A function U : S → R represents a
binary relation % if for all a, b ∈ S,

a % b⇔ U(a) ≥ U(b). (13)

U is called a representation of %.

To ensure that the relation is nontrivial, we employ the following
definition of essentiality:

Definition 22. A pair of social outcomes x, y is essential for player i if
6 ∃xi ∈ Oi : x, y ∈ xi and it is not the case that all processes on the set
{(G, θ) ∈ P : G ∈ G[{x, y}]} are indifferent.

With the first axiom, we assume the policy maker has a complete and
transitive preference relation on processes.

Axiom 1 (Rationality). % is a weak order on P, i.e.,

— a, b ∈ S implies a % b or b % a or both.

— a % b, b % c imply a % c.

Transitivity is a natural requirement from a rationality perspective.
However, completeness relies on the policy maker having to rank all
possible processes. This is more restrictive as the policy maker may be
unwilling to rank two processes on different decision domains. The
policy maker may also find some game form G and some information θ

incompatible with each other and may therefore be unable to compare
(G, θ) to other processes.

Processes that are similar to each other should also be similarly
ranked by the policy maker. We therefore adapt two conditions that
ensure this. The following Continuity axiom ensures that convergence
of information about behavior ensures convergence in preference of the
policy maker.

Axiom 2 (Continuity). For all p ∈ P and all game forms G the lower and
upper sets of %, {θ ∈ ∆∆A : p % (G, θ)} and {θ ∈ ∆∆A : (G, θ) % p} are
closed.
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Continuity requires that for a fixed game form, similar information
over players’ strategies yields a similar ranking in the preference. It does
not require that similar game forms are similarly ranked. For this, we
assume the following Outcome Equivalence axiom.

Axiom 3 (Outcome Equivalence). (G, θ) ≈ (G′, θ′)⇒ (G, θ) ∼ (G′, θ′).

Outcome equivalence makes different game forms comparable. Game
forms only matter to the extent that they generate strategic choices with
different conditional probabilities over individual outcomes.12

Example. In the Montgomery bus game, the policy maker may have some
observational data about players’ behavior. The policy maker however
does not observe the action in which player 1 buys her own bus and
drives by herself. Neither does the policy maker observe that player 1

constructs her own vehicle, goes by airplane etc.. However, most likely
the policy maker cannot exclude with certainty that these options were
not part of the game form when the choice was made. Outcome Equiva-
lence handles this issue by imposing on preferences that changing the
game form to allow for such actions does not change the preferences of
the policy maker unless these actions are chosen with positive probability.
This is the central advantage of ranking combinations of game forms
with information about behavior instead of game forms. Representing
policies by game forms would probably also require the choice of the
game form to contain implicitly the policy maker’s beliefs about which
actions are played. Alternatively, one would need to rely on definitions
such as what the legal or possible actions are. In the Montgomery bus
game, including only legal actions would remove the actually played
actions a2

2 and a3
2. Allowing for all possible actions would add the action

of player 1 to construct her own vehicle. Neither of these options seems
attractive for the purposes of policy evaluation. End of example.

We now impose independence conditions on three levels. First, on
lotteries over outcomes, second on the probabilistic information over
strategies, and third on subprocesses. The axiom on the independence
of lotteries over outcomes is the standard von Neumann-Morgenstern
axiom adapted to our setting. Processes in which no player is influential
are effectively lotteries and thus we apply the independence axiom with
respect to such processes.

12Note that Outcome Equivalence creates large equivalence classes of processes. It
may be interesting to consider changes to this axiom to measure other aspects such as
power or information transmission in games.
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Axiom 4 (Lottery Independence). Suppose no player is influential in
(G, θ), (G, θ′), (G, θ′′), then,

(G, θ) % (G, θ′) (14)
⇔ α(G, θ)⊕ (1− α)(G, θ′′) % α(G, θ′)⊕ (1− α)(G, θ′′) (15)

In other words, if nature fully controls the outcomes of the players,
then the standard independence axiom holds. In combination with
Rationality and Continuity, this axiom requires the decision maker to
have expected utility preferences over pure lotteries, i.e., processes in
which nature determines the outcomes and players have no meaningful
choice. Lottery Independence excludes certain value judgments about
institutions. Most importantly, it does not allow for source-dependent
attitudes towards risk (Chew & Sagi, 2008) of the policy maker.

Example. Consider nature’s lottery over race and gender in the Mont-
gomery Bus Game. A policy maker who finds outcome-dependence
on gender undesirable but outcome-dependence on race acceptable
violates Lottery Independence. Suppose (G, θ) is a process in which
player 1 is a black female and (G, θ′) is the process in which player 1

is a black male. In each process, the policy maker believes that player
1 plays a1

1 with certainty and player 2 plays a1
2. The policy maker is

indifferent between the two processes. Now suppose (G, θ′′) is the
process of a white male who chooses a3

1. Then, the LHS mixture of
(15) is a gender-and-race-dependent lottery while the RHS is a race-
dependent lottery. Since gender-dependent lotteries are intrinsically
undesirable to the policy maker, the indifference no longer holds – the
policy maker prefers the RHS mixture to the LHS, violating Lottery
Independence. End of example.

Strategy Independence ensures that the value of choice across strate-
gies is independent across the different strategies.

Axiom 5 (Strategy Independence). Suppose θi[µi] = θ′i [µi] and ρG,θ|µi =
ρG,θ′ |µi for all µi ∈Mi ⊆ ∆Ai, then

(G, θ) % (G, θ′) ⇔ DMi
i (G, θ) % DMi

i (G, θ′) (16)

In other words, the value of choice between two strategies does not
depend on the other choices being made. The choice removal DMi

i has
the effect of taking the choice between some strategies Mi out of the
control of player i. From the perspective of all other players, the game
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remains unchanged; the probability of each outcome given any of their
strategies is the same as before choice removal.

Example. Suppose the policy maker believes that player 1 chooses with
equal probability to play the pure strategies 1a1

1
, 1a3

1
, or 1a5

1
. In another

process, the policy maker believes that player 1 chooses with equal
probability 1a1

1
, 1a3

1
, or 1a4

1
. Suppose that the policy maker learns that

the choice between the pure strategies of 1a1
1
, or 1a3

1
is determined by

race. Then the ranking between the two processes remains unchanged
if the behavior of the other player is identical in both processes. The
latter requirement is crucial; in case player 2 plays the pure strategy a3

2,
the choice between 1a1

1
and 1a3

1
is meaningless. In case player 2 plays a1

2,
then the choice of player 1 is effectively between outcomes u1 and v1.
Strategy Independence therefore captures that ceteris paribus the value
of making a strategic choice instead of nature determining the choice
does not depend on other strategic choices. End of example.

Next, Subprocess Monotonicity ensures that the value of choice across
subprocesses is independent if the outcomes of the subgame are inde-
pendent of the remainder of the game.

Axiom 6 (Subprocess Monotonicity). Let (G, θ) and (G, θ′) be equivalent
outside the non-null subgame B. Suppose the set of influential players
in both processes is N′ and for all i ∈ N′ we have that suppi[o[B]] ∩
suppi[o[A\B]] = ∅. Then,

(G, θ) % (G, θ′)⇔ (G, θ)|B % (G, θ′)|B. (17)

Put simply, the relation %i is monotone in subprocesses that have a
disjoint support from the remainder of the game form: we can improve
a process by improving any subprocess unless some of the outcomes of
the subprocess are identical to the remainder of the process. The central
idea behind this axiom is the following: if a set of players is influential,
they can make choices to favor their interests. If they can better favor
their interests in a subgame, then this is preferable from the perspective
of the policy maker. However, this is only the case if this improvement
does not come at the cost of influence across the entire game.

Example. This example illustrates the need for requiring disjoint out-
comes. Suppose only player 1 is influential and is choosing between
sitting and standing on the bus via the pure strategies 1a1

1
and 1a3

1
. Let’s

suppose the policy maker is indifferent between disallowing standing on
the bus or disallowing sitting on the bus (essentially, limiting the player
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to either of the two actions). Since outcomes are subgames, any game
involving a choice between standing and sitting contains the subgame
in which the player stands or sits with certainty. Under Subprocess
Monotonicity without requiring disjoint outcomes, replacing the sitting
subgame by the subgame in which the player stands would leave the
policy maker indifferent. But then the agent is left in the overall game
with a trivial decision between standing and standing. This means that
a meaningful choice (between sitting and standing) and a meaningless
choice (between standing and standing) are equally good according to
the preferences of the policy maker.

The problem can be resolved by requiring disjoint outcomes in Sub-
process Monotonicity. Replacing the subgame in which the player sits by
a subgame in which the player stands does not leave the policy maker
indifferent in case somewhere in the remainder of the process the player
stands. The monotonicty axiom in this case does not bind since the
outcomes of the two subprocesses are not disjoint. End of example.

In the appendix, we prove the following theorem.

Theorem 1. Suppose for every player i there are at least four essential pairs of
outcomes. The relation % on the process space P fulfills Axioms 1-6 if and only
if there exists a continuous, real valued representation U : P→ R such that

U[G, θ] = ∑
i∈N

Ui[G, θ] (18)

Ui[G, θ] =∑
µi

θi[µi] ∑
xi∈Oi

ρG,θ|µi[xi]

(
ui[xi] + di ln

[
ρG,θ|µi[xi]

ρG,θ[xi]

])
(19)

For each player, the measure consists of an expected valuation of
the outcomes and the player’s control over own individual outcomes.
We call the expected valuation the instrumental value of the process
and the control measure the freedom value of the process. We denote
the freedom measure of player i by Fi[G, θ] = Ui[G, θ] − Ui[Di(G, θ)].
Freedom is measured by the mutual information between strategies
and outcomes. Mutual information is a measure of correlation that
imposes no structure on the relation between variables. In comparison,
the correlation coefficient assumes a linear relation. Spearman’s rank
order correlation assumes that each of the variables can be ordered. Since
the policy maker is given no information about the intention behind
strategies, mutual information is the adequate correlation measure for
judging the degree to which players use strategies to control outcomes.

Example. We return to the Montgomery bus game to exemplify the data
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necessary to apply the measure. As stated before, the advantage of our
framework is that it does not rely on unobservable information about
utilities. Instead, we require observational or experimental data about
the strategies of the players that can help inform the policy maker.13

For simplicity, we focus on the subprocess induced by the subgame
{a1

1, . . . , a4
1} × {a1

2, a2
2}. This is meaningful thanks to the Subprocess

Monotonicity axiom; if we are interested in the freedom of choice of the
overall process, we would simply need to calculate the freedom of choice
from the remaining process with an arbitrary outcome u substituted for
the subgame in which player 1 boards the bus. To the freedom obtained
for this process we then add the sum of the freedom from the subprocess
times the probability of reaching this subprocess. More succinctly put,
the freedom of an overall process consists of the expected freedom of
the disjoint subprocesses plus the freedom derived from determining
which of these subprocesses is played. While this is not obvious from
the functional form of the freedom measure, it is guaranteed via Sub-
process Monotonicity. This decomposability property is important for
applications since it allows us to focus on localized data specific to an
interaction.

The reduced form of the subgame contains the action profiles {{a1
1, a2

1},
{a3

1, a4
1}} × {a1

2, a2
2}. Under the institutional setting of Montgomery in

the early 1950s, we can inform a policy maker using the following in-
formation. To know the weight attached to nature’s lottery over race,
the policy maker needs to know the ridership composition, or more
precisely the frequency with which individuals of different background
play the Montgomery bus game. Next, we need to know the strategies
chosen by the players, conditional on race. An extremely small fraction
of courageous black women took the action {a3

1, a4
1}.14. Since in their

cases the driver took action a2
2, they were arrested. The overwhelming

majority of black passengers endured the discriminatory treatment by
taking action {a1

1, a2
1}. To account for cases in which player 1 refused to

yield their seat and managed to keep the seat, we would also need to
obtain information whether any drivers took action a1

2 when interacting
with a black passenger. Lacking evidence of such cases, we assume that

13The central difficulty of applying the measure to observational data is the possible
existence of mixed strategies. In the Montgomery bus game there is no good reason to
assume that players play mixed strategies but in other games this might be different.
Then observational data of the actions taken is not sufficient for the estimation of
freedom of choice since the choice is between mixed strategies, not actions. Instead,
the mixed strategies would need to be identified via experimental treatments.

14Claudette Colvin, Aurelia Browder, Susie McDonald, Mary Louise Smith, Jeanetta
Reese, and Rosa Parks.
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this did not happen. Similarly, there are no known accounts of white pas-
sengers being arrested for refusing to give up their seat. To estimate their
freedom of choice of voluntarily yielding their seat, we need to know
the fraction of white passengers that take action a1

1. If α is the fraction
of black passengers, ε the fraction of black passengers refusing to yield
their seat and being arrested, and γ the fraction of white passengers
yielding their seat voluntarily, then the non-instrumental component of
freedom of choice yields after rearranging terms:

(U1[G, θ]−U1[D1(G, θ)])/di

= ε · α
(

ln
1
ε

)
+ (1− γ)(1− α)

(
ln

1
1− γ

)
+ (α(1− ε) + (1− α)γ)

(
ln

1
α(1− ε) + (1− α)γ

)
+ εγ(1− α) ln (1− α) + (1− ε)(1− γ)α ln α (20)

The measure is monotonically increasing in ε for the given scenario in
which ε is small. A central distinction from impartial observer theorems
is that the freedom of player 1 is not the weighted sum of the freedom
of a white player 1 and a black player 1. The fact that the outcomes are
partially determined by nature’s lottery over race is intrinsically unde-
sirable which prevents this separability. In the following, we interpret
the terms in (20). The first three rows of (20) are the entropy of the
outcomes reached. In case player 1 would have perfect control over
which of the outcomes u, v, w arises, this would be the freedom of choice
of the player.15 However, the outcome partially depends on nature’s
lottery. The last row of (20) corrects for this with two negative terms. The
first term corrects for the probability 1− α with which player 1 reaches
outcome u when “choosing” outcome w. The second term corrects for
the probability with which player 1 reaches w when “choosing” u. Both
terms are negative since α and 1− α are smaller than one. In each case,
the correction term arises from the fact that the conditional probability
of the outcome given the strategy is not equal to one.

The example also shows that the freedom measure is completely
neutral towards the characteristic of the outcomes. All judgments re-
garding whether for example the outcome v is in the eyes of the policy
maker more desirable than the outcome w can only be contained in the

15Indeed, this would be the Suppes (1996) measure.
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instrumental value of the process. End of example.

It is important to note that the instrumental value ui does not depend
on the strategies by which this instrumental value is reached. This
means that –to the extent that utilities are only meaningful in their
impact on behavior– all potential utility information is accounted for
outside of ui! In other words, if behavior is a sufficient statistic for
utility (as is commonly assumed in economics), then the axiomatization
guarantees that ui contains no utility information. This has far reaching
consequences for a utilitarian policy maker. Either the policy maker
accepts that in the absence of cardinal utility information the mutual
information criterion is the best we can do to approximate utilitarianism
or the policy maker must argue why any of the stated axioms must be
violated in the estimation of the expected utility of every player.

A commonly employed assumption in the freedom of choice lit-
erature removes the dependence of freedom of choice on the policy
maker’s norms by assuming that all singletons are indifferent. We can
translate this condition into our setting as saying that all outcomes are
instrumentally equally valuable to the policy maker:

Remark 1. Suppose we assume the assumption of the indifference of
no-choice axiom (Pattanaik & Xu, 1990), i.e., for all social outcomes x, y,
the trivial games yielding the outcomes with certainty are indifferent,
((N, {a}, a 7→ x), 11a) ∼ ((N, {a}, a 7→ y), 11a). Then the instrumental
value is a constant and freedom only depends on the mutual information
between strategies and individual outcomes of every player.

U[G, θ]

Suppes (1996)

Jones and Sugden (1982)

Pattanaik and Xu (1990)

D−i(G, θ) = (G, θ)

P

ρG,θ|µi[xi] ∈ {0, 1},
xi ∼ yi, ∀xi, yi

xi, yi ∈ suppi[G, θ]
⇒ ρG,θ[xi] = ρG,θ[yi]

suppi[G, θ] = Oi

Figure 1: Relation of Freedom Measures

The axiomatized measure generalizes the entropy measure (Suppes,
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1996) of freedom. This follows since the entropy is a limiting case of
mutual information.

Remark 2. Suppose indifference of no-choice holds and only player i is
influential. Moreover, let supp(θi) contain only pure strategies and for
all a, supp[o[a]] ⊆ xi for some xi ∈ Oi. Then, U[D−i(G, θ)] = FS((x 7→
xi)]ρG,θ).

This establishes the relation of the measure to the Suppes measure.
In case an individual has perfect control over outcomes and the policy
maker is indifferent between all outcomes, then the measure is equal to
the Suppes measure of the distribution of the probability distribution
over outcomes. The result follows from the fact that supp[o[a]] ⊆ xi
ensures ρ|1a[xi] = 1. From this result, the comparisons to the cardinality
measure and the reasonable preference measure directly follow. For
convergence to the reasonable preference measure, we would need to
impose that the information of the policy maker θ is information about
what reasonable players would choose. Moreover, all outcomes in the
support must be equally likely. For convergence to the cardinality
measure, we would need to additionally impose that all outcomes are in
the support. Figure 1 displays the relation between different measures.

5 Freedom in a Production Economy

The utility of a definition naturally rests in how useful it is in applica-
tions. To further illustrate the defined freedom measure, we analyze
freedom in a production economy, a similar problem to the one put
forward in Pattanaik (1994). According to Pattanaik (1994), the prob-
lem of measuring freedom in an exchange economy is that prices and
therefore also opportunity sets change both with one’s own preferences
and preferences of the other agents. Since most measures of freedom
are based on opportunity sets, they fail to give a satisfying answer to
the problem, as Pattanaik (1994) concludes. The following subsections
develop a production economy with heterogeneous consumers differing
in both tastes and productivity. From the perspective of the policy maker,
each individual’s tastes and production possibilities are uncertain. More
precisely, the policy maker does not know the individual’s expected util-
ity functions. Thus, no cardinal value can be attached to utilities. Instead,
utilities are only used to rationalize behavior, i.e., to generate predictions
about consumer behavior. The policy maker forms preferences over
different levels of tax progression. Ex ante, it is unclear whether high or
low redistribution is optimal for freedom. A politician in favor of higher
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redistribution might argue that income differences limit freedom and
redistribution gives everybody equal opportunities. A politician in favor
of less redistribution might argue that redistribution intervenes in the
personal decisions of individuals to consume more or less by distorting
working incentives. Using the freedom measure, we can disentangle
these qualitative intuitions.

5.1 Production Economy

According to the information of the policy maker, the economy is struc-
tured as follows. A continuum of individuals indexed by i is uniformly
distributed on the unit interval [0, 1]. Individuals have preferences over
consumption xi and labor effort yi. To obtain closed-form solutions,
parametric assumptions on the preferences over consumption xi ≥ 0 and
labor effort yi ≥ 0 are made:16

ui(xi, yi) = αi
(δxi)

1−η

1− η
−

yζ+1
i

ζ + 1
. (21)

where η ∈ (0, 1) and ζ ∈ (0, ∞). The individual specific preference
parameter αi is distributed log-normally and independent across indi-
viduals, i.e., αi ∼ lnN (µα, σ2

α).17 Quality δ is measured by the quantity
of unit-quality goods that leaves the consumer indifferent to one unit of
quality δ. δ is distributed log-normally, δ ∼ lnN (µδ, σ2

δ ).
Let there be a competitive firm with production function Q =∫

i yiβγidi. The economy-wide efficiency parameter β is distributed log-
normally with β ∼ lnN (µβ, σ2

β). Similarly, γi is distributed log-normally
with γi ∼ lnN (µγ, σ2

γ). The firm’s profit is given by pQ −
∫

wiyidi.
In equilibrium, the firm earns zero profits and wages and prices are
wi = pβγi.

We introduce a government that taxes income via a progressive tax.

The net income of each individual i equals expenditure, f (r,β,δ)(yiwi)
1−r

1−r =
xi p. The parameter r determines the progressivity of the tax and f (r, β, δ)
is chosen such that the government balances its budget. The government
consumption is assumed to equal a fixed total share ḡ of the output
of the firm, g = ḡQ and therefore (1− ḡ)Q =

∫
xidi. In the appendix

16For ease of calculations, we assume that yi ∈ (0, ∞).
17Technically, the assumption here is that there exists a measure on a continuum of

random variables such that the weak law of large numbers holds and each variable
is i.i.d. lognormal. For a general existence proof of such measures, see Theorem 2 of
Judd (1985).
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it is shown that consumption demand and labor supply in the above
described economy are (up to a proportionality factor):

x∗i ∝

(
(αiδ

1−η)1−r
(

β
1+r 1−η

ζ+η γ1−r
i

)ζ+1
) 1

ζ+η(1−r)+r

(22)

y∗i ∝

(
αiδ

1−η

(
β

1+r 1−η
ζ+η γ1−r

i

)1−η
) 1

ζ+η(1−r)+r

(23)

5.2 The Production Economy as a Process

Although a production economy is commonly not perceived as a game,
we can still model it as a process.18 We define the set of players N as the
unit interval of individuals.

Let the set of actions of a player be the set of demand functions,
Ai = {(p, w) 7→ (xi, yi) : xi[p, w]p = yi[p, w]w}, i.e., the available actions
of each individual are all feasible consumption demand and labor supply
functions given the budget constraint. We assume that when the indi-
vidual chooses the demand function, he is informed about the quality
of the good δ, his productivity γi and the aggregate shock β. Thus, a
strategy is a fully contingent plan in which each individual i chooses
a demand function for each possible value of γi and β. According to
the information of the policy maker, the support of θi contains only the
strategies with supply and demand functions consistent with maximiza-
tion of (21). Since for every value of αi there exists a unique strategy,
the set of distinct strategies in the support of θi has a real valued repre-
sentation in the form of αi. θi is such that each αi follows a lognormal
distribution. A strategy profile is therefore represented by a mapping
α ∈ RN

+. This identification of strategies with a preference parameter is
the main conceptual step in translating the production economy into a
process.

What is left to do is to ensure that the conditional distribution of allo-
cations given strategies is consistent with that in the production economy.
To this end, o : A→ O yields a distribution over social outcomes as fol-
lows. Each social outcome is an allocation (y∗ : N→ R+, x∗ : N→ R+)
that is randomly determined via a measure o[α] consistent with Equa-
tions (23) for all individuals with lognormal distributions of β, γi, and δ.
This concludes our translation of the production economy into a process
and we can now apply the measure to this process.

18For a survey of game theoretic analyses of markets, see Giraud (2003).
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To measure freedom, some normative impositions must be made
regarding the measure. For clarity of the analysis, we ignore the tradeoff
between the instrumental value and the freedom measure by assuming
all individual outcomes are equally valuable from the perspective of the
policy maker. This means we assume the indifference of no-choice situations
axiom (Pattanaik & Xu, 1990) which allows us to focus on the mutual
information, the freedom measure. Another simplifying assumption
is that we value every individual’s freedom identically di = dj for all
i, j ∈ [0, 1].

The most interesting normative decision of the policy maker is the
choice of the individual outcome partition Oi. The choice of Oi is ul-
timately a normative question and we will explore in detail how the
choice of the individual outcome space affects the preferences of the
policy maker over different institutional arrangements.

We calculate freedom for three definitions of normatively relevant
outcomes: consumption, labor, or combinations of consumption and
labor. We may call the different freedoms consumption freedom, labor
freedom, and demand freedom. Consumption freedom refers to the de-
gree to which the consumer’s strategy influences the quantity consumed.
Labor freedom refers to the degree to which the consumer’s strategy
influences the amount of labor. Demand freedom refers to the degree to
which the strategy determines combinations of consumption and labor.

Since the strategies of the individuals and the measure over outcomes
are all continuous random variables, we replace the sums in the freedom
measure by integrals, yielding the density mutual information.

5.3 Consumption Freedom

In this subsection the policy maker imposes that for each individual i, any
two social outcomes (allocations) (x, y) and (x′, y′) in O are equivalent
from the perspective of player i, if and only if the consumption of i is
identical, xi = x′i. Therefore, the set Oi is the partition of O into sets of
outcomes within which the consumption level of i is identical. We call
this consumption freedom because the policy maker ignores all other
differences in outcomes.

Proposition 1. Consumption Freedom is measured by:

1
2

ln

[
1 +

(1− r)2σ2
α(η + ζ)2

(η + ζ − ηr + r)2((ζ + 1)2σ2
β + (1− η)2σ2

δ ) + (1− r)2(η + ζ)2(ζ + 1)2σ2
γ

]
(24)
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From this proposition it becomes apparent that consumer freedom
is increasing in σ2

α and decreasing in σ2
β, σ2

γ, and σ2
δ . This is intuitive, σ2

α

increases the diversity of strategies played, increasing freedom. For a
very small variance of α, the individual is almost completely determined
in his preferences over consumption and labor effort. If the variance of α

is large, the individual may also prefer very high consumption and high
labor effort or low consumption and low effort. This effect could also
be observed in the opportunity set based measure of Jones and Sugden
(1982) in a deterministic setting: for a given opportunity set, the measure
increases when adding additional reasonable preference relations with
new optimal elements of the opportunity set.

σ2
β, σ2

γ, and σ2
δ decrease the control of the consumer by stochastically

“disturbing” the budget constraint and the quality of the received good.
This is intuitive since stochastic production possibilities limit the extent
to which an individual’s preferences control consumption. An individual
is less free, if his consumption strongly dependens on fluctuating pro-
duction conditions, including quality. Nonetheless, if the policy maker
has the choice to implement any degree of tax progression, the policy
maker will choose a flat tax, r = 0. This is because tax progression not
only removes the effect of individual productivity disturbances γi but
also decreases strategic diversity arising from different αi; the strategies
played by two different realizations of αi become more similar with
higher r. In the case of σ2

β = 0, these effects cancel exactly and any level
of progression is optimal. However, for positive σ2

β, tax progression is
not fully effective at reducing productivity disturbances as it attenuates
disturbances on the economy-wide level less effectively than at the indi-
vidual level. The reduction in strategic diversity therefore dominates the
reduction in productivity disturbances.

5.4 Labor Freedom

In this subsection we now assume that the policy maker only cares about
the freedom to choose between allocations with different labor efforts.
Therefore, (c, y) and (c′, y′) are treated as distinct outcomes for player i
if and only if yi 6= y′i and are otherwise elements of the same element of
Oi.
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Proposition 2. Labor Freedom is measured by:

1
2

ln

1 +
σ2

α(η + ζ)2

(1− η)2
((

σ2
β + σ2

δ

)
(η + ζ − ηr + r)2 + (1− r)2σ2

γ(η + ζ)2
)


(25)

For labor freedom, the comparative statics with respect to σ2
α , σ2

β,
σ2

γ, and σ2
γ are unchanged compared to consumption freedom; freedom

increases in σ2
α , but decreases in σ2

β, and σ2
γ. However, the strategic

diversity has a direct effect on labor choices that is not mediated by
(1− r). It follows that labor freedom can be effectively increased using
a progressive tax system. The policy maker faces a tradeoff between
reducing inequality and leaving room for individuals to determine their
labor outcomes that yield the following optimal solution:

Proposition 3. The policy maker’s optimal tax progressivity is given by:

r∗ = min

[
1, max

[
0,

σ2
γ(η + ζ)2 − (σ2

β + σ2
δ )(1− η)(η + ζ)

(σ2
β + σ2

δ )(η − 1)2 + σ2
γ(η + ζ)2

]]
. (26)

On the interior, r∗ is decreasing in σ2
β, and increasing in σ2

γ, ζ, and η.

Thus, if the policy maker expects disturbances in productivity mostly
being on the individual level, the policy maker chooses a more pro-
gressive tax system. If the policy maker expects disturbances to be
macroeconomic, the policy maker chooses a lower degree of tax progres-
sion.

5.5 Demand Freedom

If the policy maker imposes that two outcomes (c, y) and (c′, y′) are
normatively equivalent from the perspective of individual i if and only
if xi = x′i and yi = y′i, we speak of a model of demand freedom. Since
demand freedom uses the cartesian product of consumption and labor,
demand freedom is the easiest to increase; a lack of freedom over con-
sumption can be substituted for by a lack of freedom over labor and vice
versa. It is harder to achieve independent control of the two variables.

The freedom over demand curves is exercised under perfect control
except for the disturbance due to quality. This is evident from the
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demand equation

αix
1−η
i δ1−η =

yζ+1
i

1− r
(27)

which depends on δ. Therefore, if the policy maker cares about freedom
of choice over demand curves, we obtain that the policy maker will try
to minimize the extent of the disturbance due to quality fluctuation; the
freedom measure becomes:

Proposition 4. Demand freedom is equal to:

1
2

ln

[
1 +

σ2
α

(η − 1)2σ2
δ

]
. (28)

We note that demand freedom is unaffected by the tax policy. Ex-
ample policy instruments to achieve a higher freedom are consumer
protection regulations and product standards. Such policies may reduce
the stochasticity of quality σ2

δ and thereby increase freedom of choice.
Naturally, such policies may also be instrumentally valued for other
reasons. However, within the framework presented in this paper, we do
not need to employ utilitarianism to motivate such policies.

Naturally, in the general context of an economy we would expect
many other freedoms to play a role, for example the freedom to choose
a specific occupation or to choose among different products. The model
presented here is only a small starting point for a more general analysis
of freedom of choice in markets.

6 Concluding Remarks

The policy evaluation criterion we presented is consistent with three
principles that are commonly employed in economics. First, the criterion
only depends on observable information; in classical welfare economics
this information used is ordinal preference, in our game theoretic setting,
the information used is the strategy of a player. Second, the criterion
is non-paternalistic and makes individuals the best judges of what is
desirable for themselves. This imposition is normative, in particular it
does not depend on the rationality of players. Third, in game forms
the criterion obeys independence across (disjoint) subgames. Without
this independence, we would need to worry that improving freedom
of choice in some context negatively impacts overall freedom of choice.
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Taken together, these principles guarantee that the the criterion can
readily be applied to many contexts, two of which have been exemplified
in this paper.
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A Proof of Theorem 1

The overall proof structure is as follows:

1. We first prove some technical lemmas that are useful. These in-
clude connectedness of the order topology on the set of processes
and a result that allows us to deduce a quasi-separable representa-
tion of the form f (x, z) + g(y, z) from two conditionally additive
representations of the form h( f (x, z) + g(y, z), z). The key axioms
used are Continuity and Outcome Equivalence.

2. Next, we show that on the space of processes that are lotteries (i.e.,
in which no player other than nature is influential), we have an
expected utility representation. The key axioms used are Lottery
Independence and Outcome Equivalence.

3. Following, we prove that there exists a representation that is quasi-
separable across players and their strategies conditional on the
outcome probabilities. More specifically, we show that this repre-
sentation is linear in the probabilities of strategies. The key axioms
used are Strategy Independence, Outcome Equivalence and the
expected utility representation over lotteries.

4. Having obtained quasi-separability across all players we can focus
on processes that have only a single influential player. We show
that the preferences over these processes are additively separable
across outcomes. All assumptions except Strategy Independence
are used in this step.

5. Next, we combine the linear representation across strategies with
the additive representation across outcomes.

6. Lastly, we employ the fundamental equation of the theory of in-
formation to solve for the procedural component. The key axiom
used is Subprocess Monotonicity and the additive separability of
the procedural preferences across strategies and from the expected
utility of the subprocesses.

To state each Lemma concisely, we omit repeating the axioms employed
in the theorem.
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A.1 Technical Lemmas

We define the order topology on P as the topology generated by the
intersections of sets of the form {p ∈ P : p � p′} and {p ∈ P : p′′ � p}
for arbitrary p′, p′′ ∈ P.

Lemma 1. P is connected in the order topology.

Proof. By connectedness of the real numbers and Continuity, the order
topology on any subspace of P of the form {(G, θ) : θ = αθ′⊕ (1−α)θ′′}
is connected. By completeness and transitivity of the relation, this
topology is identical to the subspace topology of the order topology on
P. If P is not connected, then it is the union of two nonempty disjoint
open sets P′ and P′′. Take any element p′ ∈ P′ and p′′ ∈ P′′. The order
topology on P′′′ = {(G, θ) : θ = αθ′ ⊕ (1− α)θ′′} is disconnected by
the nonempty open sets P′ ∩ P′′′ and P′′ ∩ P′′′, yielding a contradiction.
Thus, P is connected.

Lemma 2. Suppose f (g(x, y), z) = xa(y, z) + b(y, z) holds for continuous
functions f : R× Z→ R and g : R× Y→ R on some sets Y, Z. Let f and g
be invertible in the first argument, then,

f (r, z) = h−1(r)j(z) + k(z)
g(x, y) = h(xl(y) + m(y)). (29)

Proof. Let f−1, g−1 denote the inverses of f and g in their first arguments,
respectively. We use invertibility of the two functions to derive:

g(x, y) = f−1(xa(y, z0) + b(y, z0), z0)

f (r, z) =g−1(r, y0)a(y0, z) + b(y0, z)

f (g(x, y), z) =g−1(g(x, y), y0)a(y0, z) + b(y0, z)

=g−1( f−1(xa(y, z0) + b(y, z0), z0), y0)a(y0, z) + b(y0, z)
(30)

which, by the assumption that f and g are continuous, is affine in x if
and only if g−1(r, y0) and f−1(r, z0) are (up to an affine transformation)
inverses to each other. The result then follows by appropriate definitions
for h, j, k, l, m.

A.2 Expected Utility Representation on Lotteries

Lemma 3 (Expected Utility on Lotteries). On the set of nature’s lotteries over
outcomes, {(G, θ) : (G, θ) = DN(G, θ)}, the relation % can be represented by
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U[G, θ] = ∑o∈O ρ[o]U[o].

Remark 3. U[x] is shorthand for U[(N, {a}, a 7→ 1x), 11a ].

Proof. We show that % fulfills the assumptions of Herstein and Milnor
(1953). By Outcome Equivalence,

DN(G, θ) = (G, θ)⇒ (G, θ) ≈ ((N, {a}, a 7→ ρG,θ), 11a) (31)

That is, any process in which no player is influential is outcome equiva-
lent to a trivial process with a single action profile a in which a lottery
over outcomes is resolved with probabilities ρG,θ. The set of probability
distributions form a mixture space. Furthermore,

α(G, θ)⊕ (1− α)(G′, θ′) ≈ ((N, {a}, a 7→ αρG,θ ⊕ (1− α)ρG′,θ′), 11a)
(32)

and therefore mixtures between processes translate into mixtures be-
tween outcome probability distributions. It follows from Lottery Inde-
pendence that:

((N, {a}, a 7→ ρG,θ), 11a) % ((N, {a}, a 7→ ρG′,θ′), 11a)
≈ ≈

(G, θ) % (G′, θ′)
= =

DN(G, θ) % DN(G′, θ′)
⇔ αDN(G, θ)⊕ (1− α)DN(G′′, θ′′) % αDN(G′, θ′)⊕ (1− α)DN(G′′, θ′′)

≈ ≈
((N, {a}, a 7→ αρG,θ ⊕ (1− α)ρG′′,θ′′), 11a) % ((N, {a}, a 7→ αρG′,θ′ ⊕ (1− α)ρG′′,θ′′), 11a)

(33)

It follows that on the set of lotteries, % fulfills the independence axiom
(Herstein & Milnor, 1953, Axiom 3) with respect to the outcome proba-
bilities ρG,θ. Rationality and Continuity guarantee their Axioms 1 and
2. The existence of an expected utility representation follows from their
Theorem 8.

A.3 Conditional Linearity in Probabilities of Strategies

Lemma 4 (Separability in Strategies). There exists a representation of the
form:

U[G, θ] = ∑
i∈N

∑
µi

θi[µi]vi(ρG,θ|µi, ρG,θ) ≡ ∑
i∈N

Ui[G, θ]. (34)
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Proof. Both the information over strategies θ = ∏i∈N θi and the informa-
tion over strategies of particular individuals θi are probability distribu-
tions and therefore elements of mixture spaces. We first use Strategy
Independence to derive a conditional expected utility representation for
each θi. We derive the following conditional independence property. If
for all j ∈ N− {i} and all µj ∈ ∆Aj:

ρG,θi⊗θ−i |µj =ρG,θ′i⊗θ′−i
|µj = ρG,θ′′i ⊗θ′′−i

|µj (35)

ρG,θi⊗θ−i =ρG,θ′i⊗θ′−i
= ρG,θ′′i ⊗θ′′−i

(36)

then

(G, (
1
2

θi ⊕
1
2

θ′′i )⊗ θ−i) %(G, (
1
2

θ′i ⊕
1
2

θ′′i )⊗ θ−i) (37)

⇔ (G, θi ⊗ θ−i) %(G, θ′i ⊗ θ−i) (38)

We emphasize at this point that the mixture in the above processes
each represents uncertainty of the policy maker about the strategies
played by the player, not a random choice by nature. The proof of the
above independence result uses Strategy Independence and Outcome
Equivalence. First we remove choice over strategies in Mi = supp[θ′′i ].
Note that for this purpose, we may assume that θ′′i has disjoint support
from θi and θ′i since by Continuity we can choose a disjoint support
that is arbitrarily close to the actual support of θ′′i . Applying the choice
removal DMi on both sides leaves the preference unchanged. Using an
outcome equivalent transformation, we have:

(G, (
1
2

θi ⊕
1
2

θ′′i )⊗ θ−i) %(G, (
1
2

θ′i ⊕
1
2

θ′′i )⊗ θ−i) (39)

⇔ (G, (
1
2

θi ⊕
1
2

1µ∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗i
)⊗ θ−i) (40)

where 1µ∗i
denotes a mixed strategy in which i plays the actions with

the same probability with which they are played in θ′′i . Now suppose
the marginal distributions fulfill (35). Then there exists some outcome
equivalent transformation such that

(G, (
1
2

θi ⊕
1
2

1µ∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗i
)⊗ θ−i) (41)

⇔ (G, (
1
2

θi ⊕
1
2

1µ∗∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗∗i
)⊗ θ−i) (42)

where 1µ∗∗i
plays each action with the same probability as the marginal
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probability in θi. It follows that:

(G, (
1
2

θi ⊕
1
2

1µ∗∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗∗i
)⊗ θ−i) (43)

⇔ (G, θi ⊗ θ−i) %(G, (
1
2

θ′i ⊕
1
2

θi)⊗ θ−i) (44)

Proceeding in a similar manner we can derive

(G, (
1
2

θi ⊕
1
2

1µ∗∗∗i
)⊗ θ−i) %(G, (

1
2

θ′i ⊕
1
2

1µ∗∗∗i
)⊗ θ−i) (45)

⇔ (G, (
1
2

θi ⊕
1
2

θ′i)⊗ θ−i) %(G, θ′i ⊗ θ−i) (46)

where 1µ∗∗∗i
plays each action with the same probability as in θ′i .

Combining (44) with (46), we have by transitivity the desired result
(37). By Rationality and Continuity, using Theorem 8 of Herstein and
Milnor (1953), it follows that for fixed conditional outcome probabil-
ities given the other player’s strategies, we have an expected utility
representation on θi.19

Next, it holds for θN′ ⊗ θN−N′ = ∏i∈N′ θi ⊗∏i∈N−N′ θi that if for all
j ∈ N−N′ and all µj ∈ ∆Aj:

ρG,θN′⊗θN−N′
|µj =ρG,θ′

N′⊗θN−N′
|µj (47)

=ρG,θN′⊗θ′
N−N′
|µj (48)

=ρG,θ′
N′⊗θ′

N−N′
|µj, (49)

ρG,θN′⊗θN−N′
=ρG,θ′

N′⊗θN−N′
= ρG,θN′⊗θ′

N−N′
= ρG,θ′

N′⊗θ′
N−N′

, (50)

then:

(G, θN′ ⊗ θN−N′) %(G, θ′N′ ⊗ θN−N′) (51)
⇔ (G, θN′ ⊗ θ′N−N′) %(G, θ′N′ ⊗ θ′N−N′) (52)

The proof is almost identical to the above, except that instead of removing
choice over the strategies in Mi for a single player i, instead the choice
over the entire strategies ∆Aj is removed for all j ∈ N−N′. We therefore
have an additively separable representation across the probabilities of
the strategies of each of the players.

Finally, we show that the expected utility representation and the

19Although this result holds for arbitrary i, this of course does not yet imply that (for
fixed probability of o) the aggregation (across i) of the expected utility representations
is additive.
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additive representation across players are jointly additive. If for some
individuals i, j,

ρG,θij⊗θ−ij |µk =ρG,θ′ij⊗θ−ij
|µk (53)

=ρG,θij⊗θ′−ij
|µk (54)

=ρG,θ′ij⊗θ−ij
|µk, µk ∈ ∆Ak, ∀k ∈ N− {i, j}, (55)

ρG,θij⊗θ−ij =ρG,θ′ij⊗θ−ij
= ρG,θij⊗θ′−ij

= ρG,θ′ij⊗θ′−ij
(56)

then,

(G,
1
2

θi ⊕
1
2

θ′i ⊗
1
2

θj ⊕
1
2

θ′j ⊗ θ−ij) %(G,
1
2

θi ⊕
1
2

θ′i ⊗
1
2

θj ⊕
1
2

θ′j ⊗ θ−ij)

(57)

⇔ (G,
1
2

θi ⊕
1
2

θ′′i ⊗
1
2

θj ⊕
1
2

θ′′j ⊗ θ−ij) %(G,
1
2

θi ⊕
1
2

θ′′i ⊗
1
2

θj ⊕
1
2

θ′′j ⊗ θ−ij)

(58)

When fixing all θk, ρ, and all ρ|µk for all individuals k 6= i, j and strategies
µk in the support, we can therefore find an additive representation of the
form:

U[G,
1
2

θi ⊕
1
2

θ′i ⊗
1
2

θj ⊕
1
2

θ′j ⊗ θ−ij] (59)

= fi[θi] + gi[θ
′
i ] + f j[θj] + gj[θ

′
j] (60)

Since for the probabilities of strategic choice of each individual we have
an expected utility representation, we indeed have:

U[G, αθi ⊕ (1− α)θ′i ⊗ βθj ⊕ (1− β)θ′j ⊗ θ−ij] (61)

=αhi[θi] + (1− α)hi[θ
′
i ] + βhj[θj] + (1− β)hj[θ

′
j] (62)

since the expected utility representation is additive and uniqueness
of additive representations applies. Further, we can derive hi[θi] =

∑µi
θi[µi]w[µi] using Cauchy’s functional equation. By Outcome Equiva-

lence, increasing the probability that µi will be played instead of µ′i only
matter if ρG,θ|µi 6= ρG,θ|µ′i, thus: hi[θi] = ∑µi

θi[µi]vi[ρG,θ|µi]]. While we
have only shown additive separability of the expected utility representa-
tions for i and j, the extension to n individuals is straightforward and
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we therefore obtain a representation:

U[G, θ] = V

[
∑

i
∑
µi

θi[µi]vi[ρG,θ|µi], ρG,θ], ρG,θ

]
(63)

for arbitrary ρG,θ.
What is left to show is that V is affine in its first argument. For this,

we assume there are three influential players.20 Consider a process θ

such that:

θ =θ{B,C,D} ⊗ θB ⊗ θC ⊗ θD (64)

θ{B,C,D} =θ1 ⊗∏
j 6=1

11dj
(65)

θB =θ2 ⊗∏
j 6=2

11bj
(66)

θC =θ3 ⊗∏
j 6=3

11cj
(67)

θD =θ4 ⊗∏
j 6=4

11dj
(68)

This process has three subprocesses in which on each subprocess only a
single player chooses between strategies. All other players play a single
pure strategy. Player 1’s strategies determine which of the subprocesses
is being played. We assume that the three subprocesses each have two
disjoint outcomes from the remainder of the game form. We have the
representation:

V
[

∑
µ1

θ1[µ1]v1[ρG,θ|µ1, ρG,θ] (69)

+ ∑
µ2

θ2[µ2]v2[ρG,θ|µ2, ρG,θ] (70)

+ ∑
µ3

θ3[µ3]v3[ρG,θ|µ3, ρG,θ] (71)

+ ∑
µ4

θ4[µ4]v4[ρG,θ|µ4, ρG,θ], ρG,θ

]
(72)

For fixed outcome probabilities, this representation is additively separa-
ble in the three subprocesses. Note that by Subprocess Monotonicity, on

20It is straightforward to adapt the proof to a single influential player. Employing
distinct influential players for each subprocess makes the proof notationally clearer,
however.
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the space of processes of the above form, % fulfills joint independence
across subprocesses for fixed θ1. By Gorman (1968) there then exists an
additively separable representation of the form:

W[ f2[θ2, θ1] + f3[θ3, θ1] + f4[θ4, θ1], θ1] (73)

where W is monotone and thus invertible in its first argument. We show
that W must be affine. Indeed, by the existence of an expected utility
representation in case θ1 = 1µ1 , . . . , θ4 = 1µ4 it follows that W is affine if
θ1 = 1µ1 . Without loss of generality then,

V
[

v1[ρG,θ|µ1, ρG,θ] (74)

+ ∑
µ2

θ2[µ2]v2[ρG,θ|µ2, ρG,θ] (75)

+ ∑
µ3

θ3[µ3]v3[ρG,θ|µ3, ρG,θ] (76)

+ ∑
µ4

θ4[µ4]v4[ρG,θ|µ4, ρG,θ], ρG,θ

]
= f2[θ2, θ1] + f3[θ3, θ1] + f4[θ4, θ1]

(77)

if θ1 = 1µ1 . Since the three players 2, 3, 4 are influential, their sum
components on the LHS vary for fixed ρG,θ. It follows that for fixed ρG,θ,
both the RHS and the first argument of V are additive representations
across θ2, . . . , θ4. We therefore obtain by uniqueness of additive repre-
sentations that V is affine in the first argument. Since ∑µi

θi[µi] = 1, it is
without loss of generality to assume that V is the unit transformation.
We therefore obtain the desired representation:

U[G, θ] = ∑
i∈N

∑
µi

θ[µi]vi[ρG,θ|µi, ρG,θ] (78)

= ∑
i∈N

Ui[G, θ] (79)

A.4 Additive Separability on Subprocesses

The remainder of the proof is about specifying the functional form of
Ui. In order to identify vi for some player i, we need to consider only
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processes in which a single player i is influential, since

Ui[G, θ] (80)
=U[D−i(G, θ)]−∑

j 6=i
Uj[D−i(G, θ)] (81)

=U[D−i(G, θ)]−∑
j 6=i

U[D−jD−i(G, θ)] + ∑
j 6=i

∑
k 6=j

Uk[D−jD−i(G, θ)] (82)

=U[D−i(G, θ)]−U[DN(G, θ)] + Ui[DN(G, θ)]. (83)

The latter two terms of the expressions have already been determined
as expected utility representations. We therefore focus on processes
of the form D−i(G, θ). Using Outcome Equivalence, we can further
focus on the processes in which all uncertainty is resolved in the mixed
strategies of player i instead of by nature. For this, we define a game form
G∗ = (N,A∗, o∗) such that for some bijection f : O→ A∗, o[ f (x)] = 1x.

Lemma 5 (Equivalence to game form without nature). Suppose that θ[µ] =
θ∗[ f #

⊕
a µ[a]o[a]] for all µ ∈ supp[θ], then (G, θ) ∼ (G∗, θ∗).

Proof. The two processes are outcome equivalent.

Lemma 6 (Power Removal Lemma). Let (G, θ) be in outcome form with
mapping f : O→ A∗. Let g : O→ ∏i Oi be the product mapping of each of the
canonical maps gi of the partition Oi. Let A′ = {B ⊆ A : ∃xi ∈ Oi : f [xi] =
B}. Let θ′ and o′ fulfill for all a′ ∈ A′ and all µ:

o′[a′] = 1 f−1[a′] ⊗∏
j 6=i

gj#ρG,θ (84)

θ′[ f ◦ gi ◦ f−1#µ] = θ[µ] (85)

Then (G, θ) ∼ (G′, θ′).

Thus, we replace each action profile in A with an action that yields
a particular outcome from Oi and the same lottery across all other
outcomes. This naturally generates an outcome equivalent process.

Proof. We show that the processes are outcome equivalent. For all j 6= i
and all a′ ∈ A′,, µi ∈ ∆Ai: gj#ρG,θ = gj#o′[a′] = gj#ρG′,θ′ |µi = gj#ρG′,θ′ .
For player i, we first note that f ◦ gi ◦ f−1 is the canonical mapping from
A to A′, since A′ is a partition of A. All actions in a′ yield the same
outcome for i as each a ∈ a′. Therefore, gi#ρG,θ|µ = gi#ρG′,θ′ | f ◦ gi ◦
f−1#µ.
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Note that in processes in which power has been removed, there exists
a bijection f ′ : Oi → A such that the action a of player i determines the
outcome f−1[a] with certainty.

To use Subprocess Monotonicity, we require disjoint subgames. Con-
sider the canonical mapping g : O→ Oi that maps each element to their
equivalence class. Note that the image f [g−1[xi]] is a subgame of G∗. We
now create for every process (G∗, θ) an indifferent process (G∗, θ∗) such

that µ[ f [x]] = µ[ f [xi]]
⊕

µ′ θ[µ′]µ′[x]⊕
µ′ θ[µ′]µ′[xi]

for all µ ∈ supp[θ∗]. In other words,

while strategies may differ about the probabilities of elements of Oi,
conditional on reaching xi ∈ Oi, all strategies yield the same probability
distribution over outcomes. This means that player i can only influence
the own outcomes. To prove this, we must first find a way to decompose
a process into subgames. This is done in the following Lemma.

Lemma 7 (Disjoint Subprocess Decomposition Lemma). Let (G, θ) be in
powerless outcome form with mapping f : O → A. Consider a partition A

of A. For any B ∈ A, denote by θB the conditional probabilities fulfilling
(G, θB) = (G, θ)|B. Let the function h : supp[θ] ×∏B∈B suppθB → ∆A

map strategies on every subgame to strategies in the game such that: Define,

h[k#µ, {µB}B][C] =∑
B

k#µ[B]µB[B∩ C] (86)

θ∗[h[µ′, {µB}]] =θ[µ′]∏
B

θB[µB] (87)

b :
(
k#µ, {µ|B}B∈A

)
7→
⊕
B

k#µ[B]µ|B (88)

θA[k#µ] =θ[µ] (89)

θ∗ =b#

(
θA ⊗∏

B

θB

)
. (90)

Then, (G∗, θ) ∼ (G∗, θ∗).

Proof. The two processes are identical on every subprocess. By subpro-
cess monotonicity, if after equalizing the outcomes within each of the
subprocesses the two processes are equivalent, then they are indifferent.
Note that after identifying the outcomes of the actions within each sub-
process, all strategies µ that are identical under the pushforward k#µ are
strategically equivalent. It follows that in this case every µ ∈ suppi[θ]
is strategically equivalent to all elements of h[µ, ∏B∈B suppθB ]. Since
θ∗[h[µ, ∏B∈B suppθB ]] = θ[µ], it follows that the processes are equiva-
lent.
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We now focus on processes in outcome form in which i has no power
and with some subprocess decomposition corresponding to a partition
Oi of Oi. These processes have all information stripped that are irrelevant
for the determination of Ui. Note that the bijection f , every partition of Oi
corresponds to a unique partition of A and vice versa. The specification
of a partition of outcomes gives us a unique subprocess decomposition.
In the following, we will refer to such processes alternatively as Oi-
decomposed or A-decomposed processes.

Lemma 8. Let Si contain all processes fulfilling (G, θ) = D−i(G, θ) in power-
less outcome form with bijection f : Oi → A. Let Oi be a partition of Oi contain-
ing three elements with jointly essential outcomes. Then A = { f [x] : x ∈ Oi}
there exists a representation U : Si → R of % such that:

U[G, θ] = K

[
∑
B∈A

FB[U[(G, θ)|B], θ∗
A
], θ∗

A

]
. (91)

Proof. We proceed in the following steps:

1. We provide the representation for an arbitrary fixed partition of
outcomes.

2. We show that the choice of the partitioning does not influence the
representation.

Consider the decomposition A = {B,C,D}. Without loss of generality,
by the previous lemmas we find the indifferent process (G∗, θ∗

A
⊗ θ∗B ⊗

θ∗C ⊗ θ∗D).
We use the result of Gorman, 1968 to obtain an additively separa-

ble representation. To apply this result, we require a product space,
topological connectedness of each dimension of the product space, and
continuous preorders on the subsets of dimensions of the product space
that are additively separable in the representation. Clearly, the set of
processes of the form (G∗, θ∗

A
⊗ θ∗B ⊗ θ∗C ⊗ θ∗D) forms a product space

with the dimensions being the strategies over subprocesses and the set
of strategies θ∗{B,C,D} that determine which subprocess is played. We
use the preorder topology on these subsets which guarantees connect-
edness by Lemma 1. By Subprocess Monotonicity, (G∗, θB) %i (G∗, θ′B)
if and only if (G∗, θA ⊗ θB ⊗ θC ⊗ θD) %i (G∗, θA ⊗ θ′B ⊗ θC ⊗ θD). This
yields so-called coordinate independence in each of the subprocesses
but not joint independence of the three dimensions. To obtain joint
independence, we also need a preorder on combinations of subpro-
cesses, for example θB ⊗ θC. We obtain this preorder by finding for
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every process the indifferent process (G∗, θ{B∪C,D} ⊗ θB∪C ⊗ θD). For
such processes, we have that (G∗, θB∪C) %i (G∗, θB∪C) if and only if
(G∗, θ{B∪C,D} ⊗ θB∪C ⊗ θD) %i (G∗, θ{B∪C,D} ⊗ θB∪C ⊗ θD). This yields a
well defined preorder on combinations of subprocesses and therefore we
have joint independence. From Gorman, 1968 then follows the existence
of a representation of the form:

U[G, θ] = K
[

FB[θ∗{B,C,D}, θ∗B] + FC[θ∗{B,C,D}, θ∗C] + FD[θ∗{B,C,D}, θ∗D], θ∗{B,C,D}

]
(92)

The extension to arbitrary finite dimensions follows from a simple in-
duction argument, since for a process in powerless outcome form, the
union of any two disjoint subgames form a disjoint subgame. Finally, we
note that FB must be an increasing function of U[(G, θ)|B] for changes
in θ∗B.

Lemma 9. Suppose (G, θ) = D−i(G, θ). Let A be a partition of A into
subgames with disjoint, essential outcomes. Then there exists a representation
of %i in the form

U[G, θ] = ∑
B∈A

U[G, θ∗B]MB[θ
∗
A
] + LB[θ

∗
A
]. (93)

The result follows from repeated application of a uniqueness argu-
ment of additive representations; if a relation can be represented by a
sum of two or more additive functions, then any other such representa-
tion must be an affine transformation of this representation.

Proof. By the previous Lemma, we may construct additive represen-
tations over processes with decompositions A = {B, {C,D},E} and
A
′
= {B,C, {D,E}}. Note that on the set of processes in which E is null,

the representations must agree up to a positive monotone transformation.
We assume this transformation to be the identity (this is without loss of
generality as we can simply redefine K for one of the representations).
Letting θ∗

A
converge to the case where E is null yields by Continuity two

representations of the form:

U[G, θ] =K[FB[U[G, θ∗B], θ∗
A
] + FC∪D[U[G, θ∗C∪D], θ∗B,C∪D], θ∗

A
]

=K′[F′B[U[G, θ∗B], θ∗
A
′ ] + F′C[U[G, θ∗C], θ∗

A
′ ] + F′D[U[G, θ∗D], θ∗

A
′ ], θ∗

A
′ ]

(94)

Since the first argument of K and K′ are both additive representations
over θ∗B and θ∗C, for fixed θ∗{B,C∪D}, the transformation K−1[K′[·, θ∗

A
′ ], θ∗

A
]
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must be affine. We note that all information in θ∗
A

is contained in θ∗
A
′ . It

follows that

F′B[U[G, θ∗B], θ∗
A
′ ] = FB[U[G, θ∗B], θ∗

A
]MB[θ

∗
A
′ ] + LB[θ

∗
A
′ ] (95)

Note that we can choose K, K′ such that M only depends on θ∗
A\E =

θ∗{B,C∪D} since the ranking over θ∗B is separable from the ranking over
θ∗{C,D}. More generally, for any subgame B and its complement A\B, the
transformation FB only depends on the utility of the subprocess U[G, θ∗B]
and the measure θ∗

B,A\B. Therefore, we obtain the representation:

K′[F′B[U[G, θ∗B], θ∗{B,A\B}] + F′C[U[G, θ∗C], θ∗{C,A\C}] + F′D[U[G, θ∗D], θ∗{D,A\D}], θ∗
A′
]

(96)

What is left to show is that all FB and K are affine. Note that in the
above representation, we can let θ∗{B∪C∪D} converge to θ∗{C∪D} by let-
ting B become null. On the subset of such processes, we obtain the
representation:

U[G, θ∗C∪D] = K′
[

F′C[U[G, θ∗C], θ∗{C,D}] + F′D[U[G, θ∗D], θ∗{C,D}], θ∗{C,D}

]
(97)

Noting that Equation (94) is a monotone function of the above, we can
substitute and use the uniqueness of additive representation argument
to obtain that FC∪D[K′[r, θ∗{C,D}], θ∗{B,C∪D}] is affine in r. This condition
fulfills the functional equation solved in Lemma 2. It follows that there
exists some continuous monotone transformation of U that makes both
K and all functions FC affine transformations of their first argument.

Lemma 10.

MC[θ
∗
{B,C,D}] =MC∪D[θ

∗
{B,C∪D}]MC[θ

∗
{C,D}] (98)

=MC[θ
∗
{C,B∪D}]. (99)
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Proof. From the previous lemma, we have the following representations:

U[G, θ] =U[G, θ∗{B,C,D} ⊗ θ∗B ⊗ θ∗C ⊗ θ∗D]

=U[G, θ∗C]MC[θ
∗
{B,C,D}] + . . .

=U[G, θ∗{B,C∪D} ⊗ θ∗B ⊗ θ∗{C,D} ⊗ θ∗C ⊗ θ∗D]

=U[G, θ∗C∪D]MC∪D[θ
∗
{B,C∪D}] + . . .

=U[G, θ∗C]MC[θ
∗
{C,D}]MC∪D[θ

∗
{B,C∪D}] + . . . , (100)

where we have assumed without loss of generality that the game form
G is sufficiently rich in actions. Using a small change in U[G, θ∗C], the
first line of the result follows since the change must be equal in all of
the above representations. The second line result can be derived by
comparing the above representation to:

U[G, θ] =U[G, θ∗{C,B∪D} ⊗ θ∗C ⊗ θ∗{B,D} ⊗ θ∗B ⊗ θ∗D] (101)

=MC[θ
∗
{C,B∪D}]U[G, θ∗C] + . . . (102)

By a small change in U[G, θ∗{C,B∪D}], it then follows that MC[θ
∗
{B,C,C}] =

MC[θ
∗
{C,B∪D}].

Lemma 11. MC[θ
∗
{C,D}] = ∑µ θ∗{C,D}[µ]µ[C].

Proof. We use the special case of a process with a support of three
subprocesses and in which only a single strategy µ′ yields with positive
probability the subprocess obtained by conditioning on the subgame C.
Formally, let θ fulfill for all µ:

θ[µ] > 0, µ[C] > 0⇒ µ = µ′ (103)

from this follows that we can parametrize the following measures:

θ∗{C,B∪D} = f [θ[µ′], µ′[C]] (104)

θ∗{C,B} =g

[
θ[µ′](µ′[B∪ C])

∑µ θ[µ](µ[B∪ C])
,

µ′[C]

1− µ′[B∪ C]

]
(105)

θ∗{B∪C,D} =h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]
(106)
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We therefore have:

MC[θ
∗
{C,B∪D}] (107)

=MC[ f [θ[µ′], µ′[C]]] (108)
=MC[θ

∗
{B∪C}]MB∪C[θ

∗
{B∪C,D}] (109)

=MC

[
g

[
θ[µ′](µ′[B∪ C])

∑µ θ[µ](µ[B∪ C])
,

µ′[C]

µ′[B∪ C]

]]
MB∪C

[
h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]]
(110)

Note that only M{C,D} and M{B,C,D} depend on µ′[C]. We apply the
following substitutions:

∑
µ

θ[µ]µ[B∪ C] = p̂ (111)

θ[µ′]µ′[B∪ C]

p̂
=θ̂ (112)

and obtain:

MC[ f [θ[µ′], µ′[C]]] (113)

=MC

[
g
[

θ̂,
θ[µ′]µ′[C]

θ̂ p̂

]]
MB∪C

[
h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]]
(114)

It follows that the composition of MB∪C and h only depends on the
values of θ[µ′], µ′[B∪ C], p̂, θ̂, which we write as

MB∪C
[

h
[
{θ[µ], µ[B∪ C]}µ∈supp[θ]

]]
= k[θ[µ′], µ′[B∪ C], p̂, θ̂]. (115)

Holding θ[µ′] and θ̂ constant we obtain a Pexider-like logarithmic equa-
tion21 with the solution,

MC[ f [θ[µ′], µ′[C]]] = f̂ [θ[µ′]]µ′[C]γ (116)

MC

[
g
[

θ̂,
θ[µ′]µ′[C]

θ̂ p̂

]]
=ĝ[θ̂]

(
θ[µ′]µ′[C]

θ̂ p̂

)γ

(117)

k[θ[µ′], µ′[C], p̂, θ̂] =k̂[θ[µ′], θ̂′] ( p̂)γ (118)

Next, we note that k̂[·] = 1 since in the limit if p̂ → 1, the functions

21We obtain exactly the Pexider equation on an interval domain by taking logarithms
on both sides, rearranging terms, and exponentiating the variables. Solving this
functional equation yields the stated result.
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MC[ f [. . .]] and MC[g[. . .]] converge. It follows that f̂ [θ[µ′]] = (θ[µ′])γ

and ĝ[θ̂] = (θ̂)γ.
Since we have previously obtained in the proof of Lemma 3 an ex-

pected utility representation over outcomes, and outcomes are subgames,
it follows directly that γ = 1.

A.5 Joint Conditional Additivity on Outcomes and Strate-
gies

We now have two representations, one conditionally additively separable
in strategies and the other additively separable across outcomes. The
two representations are affine transformations of another as shown in
the proof of 4. Without loss of generality, we assume this transformation
to be the identity transformation. We then obtain the following lemma.

Lemma 12. If A is a partition of A into disjoint subgames, then

Ui[G, θ] = ∑
µi

∑
B∈A

θi[µi] (µi[B]U[(G, θ)|B] + l[µi[B], ρ[B]]) (119)

Proof. We have two representations from previous Lemmas:

∑
µi

θ[µi]vi[ρ|µi, ρ] = ∑
B

ρ(B)U[(G, θ)|B] + LB[θ] (120)

We assume there are four subprocesses, B, C, D, and E. Without loss
of generality, we assume that these subprocesses each yield a different
outcome with certainty and thus ρ[x|µ] = µ[B] for some outcome x. We
can choose a parametrization such that ρ|µi = f (ε, δ), ρ|µ′i = f ′(ε), and
ρ|µ′′i = f ′′(δ). Namely, we choose ε to transfer probability from µi[B] to
µi[C] and from µ′i[C] to µ′i[B] to keep the probabilities of the outcomes
unchanged. δ reallocates probability from µi[D] to µi[E] and from µ′′i [E]
to µ′′i [D]. Moreover, θ|B = t(ε) and θ|B = t′(ε) as well as θ|C = t′′(δ)
and θ|D = t′′′(δ).

θ[µi]vi[ f (ε, δ), ρ] (121)
+ θ[µ′i]v

′
i[ f ′(ε), ρ] (122)

+ θ[µ′′i ]v
′′
i [ f ′′(δ), ρ] + . . . (123)

=LB[t(ε)] + LC[t′(ε)] + LD[t′′(δ)] + LE[t′′′(δ)] + . . . (124)

and therefore vi is additively separable in ε and δ. Repeating the above
steps for reassignments of probability between µi[B] and µi[D] as well
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as between µi[C] and µi[E], it is straightforward to obtain that vi is
indeed additively separable across µi[B], µi[C], etc.. Thus, vi[ρ|µi, ρ] =

∑B wi,B[ρ|µi[B], ρ]. We can now derive the functional form of LB.

LB[θ] + LC[θ] + . . . (125)
=∑

µ

θ[µ] (wi,B[µ[B], ρ]− µ[B]Ui[(G, θ)|B]) (126)

+ ∑
µ

θ[µ] (wi,C[µ[C], ρ]− µ[B]Ui[(G, θ)|C]) + . . . (127)

For fixed ρ[B ∪ C] and considering only changes in θB,C, LB does not
depend on any of the omitted terms. Moreover, LB does not depend
on ρ[C] since LB[θ] = LB[θB,C∪D∪E]. Therefore, for a suitably chosen
function lB, we have that LB[θ] = ∑µ θ[µ]lB[µ[B], ρ[B]]. By Continuity,
we may impose without loss of generality that lB[0, ρ[B]] = 0.

What is left to show is that lB can be chosen to be identical across
B. For this, suppose that the support of the subprocess B contains two
outcomes. By Continuity, for a sequence of subprocesses such that the
probability of one outcome converges to zero, their utility Ui[(G, θ)|B]
converges to the utility at which the probability of the outcome is zero.
Similarly, Ui[G, θ] converges to the utility at which the probability of the
outcome is zero. But then under an outcome equivalent transformation
fB[. . .] = fB′ [. . .] where B′ is obtained by removing actions that yield
the outcome.

A.6 Determination of the Functional Form of Procedural

Preferences

We now define h[x, y] = l[x, y] + l[1− x, 1− y].

Lemma 13.

h(1, x) = α(x ln[x] + (1− x) ln[1− x]) (128)

Proof. We employ a process such that θ[µ] + θ[µ′] + θ[µ′′] = 1. Also,
µ[B] = µ′[C] = µ′′[D] = 1. We use the above lemma twice on different
partitions, {B,C ∪ D} and {C,B ∪ D}. We therefore obtain the two
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representations:

θ[µ]h(1, θ[µ]) + (1− θ[µ])h(0, θ[µ]) (129)

+ (1− θ[µ])

(
θ[µ′]

1− θ[µ]
h(1,

θ[µ′]

1− θ[µ]
) +

θ[µ′′]

1− θ[µ]
h(0,

θ[µ′′]

1− θ[µ]
)

)
(130)

=θ[µ′]h(1, θ[µ′]) + (1− θ[µ′])h(0, θ[µ′]) (131)

+ (1− θ[µ′])

(
θ[µ]

1− θ[µ′]
h(1,

θ[µ]

1− θ[µ′]
) +

θ[µ′′]

1− θ[µ′]
h(0,

θ[µ′′]

1− θ[µ′]
)

)
(132)

Where we have cancelled the terms containing U[G, θB], etc.. We may
assume without loss of generality that h(1, x) = h(0, x). We then have:

h(1, θ[µ]) + (1− θ[µ])

(
h(1,

θ[µ′]

1− θ[µ]
)

)
(133)

=h(1, θ[µ′]) + (1− θ[µ′])

(
h(1,

θ[µ]

1− θ[µ′]
)

)
(134)

This is the fundamental equation of information (Aczél & Dhombres,
1989; Ebanks, Kannappan, & Ng, 1987). Up to a constant and a linear
component in θ[µ] (which can be removed by redefining U[G, θB]), the
solution is:

h(1, θ[µ]) = α (θ[µ] ln[θ[µ]] + (1− θ[µ]) ln[1− θ[µ]]) (135)

Lemma 14.

h(x, x) = β (x ln[x] + (1− x) ln[1− x]) (136)

Proof. We employ a process with θ[µ] = 1, µ[B] + µ[C] + µ[D] = 1. The
two partitions {B,C∪D} and {C,B∪D} generate two representations
which yield after cancelling terms:

h(µ[B], µ[B]) + (1− µ[B])

(
h(

µ[C]

1− µ[B]
,

µ[C]

1− µ[B]
)

)
(137)

=h(µ[C], µ[C]) + (1− µ[C])

(
h(

µ[B]

1− µ[C]
,

µ[B]

1− µ[C]
)

)
(138)

This is the fundamental equation of information with the solution:

h(µ[B], µ[B]) = α (µ[B] ln[µ[B]] + (1− µ[B]) ln[1− µ[B]]) (139)
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Lemma 15.

h[x, y] =(β− α) (x ln[x] + (1− x) ln[1− x]) (140)
+ α (y ln[y] + (1− y) ln[1− y]) (141)

Proof. We employ a process of the form θ[µ] + θ[µ′] = 1 with strategies
that fulfill: µ[B∪D] = 1 and µ′[C] = 1. We obtain the representations:

θ[µ]h[µ[B], θ[µ]µ[B]] + (1− θ[µ])h[0, θ[µ]µ[B]] + (1− θ[µ]µ[B])

(142)

·
(

θ[µ](1− µ[B])

1− θ[µ]µ[B]
h[0,

1− θ[µ]

1− θ[µ]µ[B]
] +

(
1− θ[µ]

1− θ[µ]µ[B]

)
h[1,

1− θ[µ]

1− θ[µ]µ[B]
]

)
(143)

=θ[µ]h[0, 1− θ[µ]] + (1− θ[µ])h[1, 1− θ[µ]] + θ[µ]h[µ[B], µ[B]] (144)

For better readability, we substitute x = µ[B] and y = θ[µ]µ[B].

y/xh[x, y] + (1− y/x)h[0, y] + (1− y)h[1,
1− x
1− y

y
x
] (145)

=h[0, 1− y/x] + (y/x)h[x, x] (146)

where we made use of h[0, x] = h[1, x]. We next solve for h[x, y]:

h[x, y] =x/yh[0, 1− y/x] (147)
+ h[x, x] (148)
− (x− y)/yh[0, y] (149)

− x(1− y)/yh[1,
1− x
1− y

y
x
] (150)

From Lemmas 13 and 14 we have the solutions for h[0, y], and h[x, x].
Substituting these into the above equation gives us the solution for
h[x, y]:

h[x, y] =(β− α) (x ln[x] + (1− x) ln[1− x]) (151)
+ α (y ln[y] + (1− y) ln[1− y]) (152)

=h[x, x]− h[0, x] + h[0, y] (153)

It is straightforward to verify that the solutions for h[x, x], h[0, y], and
h[x, y] are compatible with another.
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We conclude the proof as follows. If β = 0, then the procedural
preferences are equal to the binary mutual information. We obtain that
β = 0 by lottery independence. If β 6= α, then U[DN(G, θ)] consists of an
expectation and an entropy, violating Lottery Independence. Extending
the binary mutual information to multiple outcomes follows from substi-
tuting the utility representation of the subprocesses. We have therefore
identified that Ui is the sum of expectations across outcomes and mutual
information. Since we determine the function h for each player, we may
choose separate parameters β and name these di.

B Proof of Propositions

Proof. The consumer i maximizes the Lagrangian:

max
xi,yi,λi

u(xi, yi)− λi(xi p− (wiyi)
1−r f (r, β, δ)

1− r
) (154)

As long as r > − ζ+η
1−η , which is guaranteed by 0 < η < 1, ζ > 0, and

0 < r < 1, this problem has an interior solution and first order conditions
are necessary and sufficient for optimality:

w1−r
i f (r, β, δ)λi = yζ+r

i (155)

λi p = αiδ
1−ηx−η

i (156)

xi p = (wiyi)
1−r f (r, β, δ)

1− r
(157)

From which we obtain:

w1−r
i f (r, β, δ)

p
=

yζ+r
i

αiδ1−ηx−η
i

(158)

αiδ
1−ηx1−η

i =
y1+ζ

i
1− r

(159)
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Solving for the optimal consumption and labor plan:

x∗i =


(αiδ

1−η)1−r
(

f (r,β,δ)w1−r
i

p

)ζ+1

(1− r)ζ+r


1

ζ+η(1−r)+r

(160)

y∗i =


αiδ

1−η

(
f (r,β,δ)w1−r

i
p

)1−η

(1− r)−η


1

ζ+η(1−r)+r

(161)

The firm takes prices as given and maximizes the objective:

max
C,{yi}i∈[0,1],λ

Cp−
∫ 1

0
wiyidi− λ

(
C−

∫ 1

0
yiβγidi

)
(162)

from which we obtain the optimality condition:

wi = pβγi (163)

In equilibrium with numeraire p = 1/β then:

x∗i =

 (αiδ
1−η)1−r

(
β f (r, β, δ)γ1−r

i

)ζ+1

(1− r)ζ+r


1

ζ+η(1−r)+r

(164)

y∗i =

αiδ
1−η

(
β f (r, β, δ)γ1−r

i

)1−η

(1− r)−η


1

ζ+η(1−r)+r

(165)

We assume a market clearing condition according to which the govern-
ment chooses f (r, β, δ) such that it purchases a fraction ḡ of the good.
We therefore have the market clearing and budget balance constraints:∫

xidi =(1− ḡ)
∫

βγiyidi (166)

pḡq =
∫

wiyidi−
∫

(wiyi)
1−r f (r, β, δ)

1− r
di (167)
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From which we obtain:

f (r, β, δ)

1− r
=(1− ḡ)

∫
yiγidi∫

(γiyi)1−rdi
(168)

f (r, β, δ)
ζ+η

ζ+η(1−r)+r

1− r
=(1− ḡ)

(
(βδ)1−η

(1− r)−η

) r
ζ+η(1−r)+r

∫ (
αiγ

1+ζ
i

) 1
ζ+η(1−r)+r di∫ (

αiγ
1+ζ
i

) 1−r
ζ+η(1−r)+r di

(169)

As levels can be shown to be irrelevant for the mutual information of
lognormal variables, we are only interested in the proportionality:

f (r, β, δ) ∝ (βδ)
r 1−η

ζ+η (170)

and therefore

x∗i ∝


α1−r

i δ
1−η+r (1−η)2

ζ+η

(
β

1+r 1−η
ζ+η γ1−r

i

)ζ+1

(1− r)ζ+r


1

ζ+η(1−r)+r

(171)

y∗i ∝


αi

(
(βδ)

1+r 1−η
ζ+η γ1−r

i

)1−η

(1− r)−η


1

ζ+η(1−r)+r

(172)

Taking logarithms and assuming proportionality factors Q̂ and Q̄:

ln x∗i = Q̂ +
1− r

ζ + η(1− r) + r
ln αi

+
ζ + 1
ζ + η

ln β

+
(1− r)(ζ + 1)

ζ + η(1− r) + r
ln γi

+
1− η

ζ + η
ln δ (173)
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ln y∗i = Q̄ +
1

ζ + η(1− r) + r
ln αi

+
1− η

ζ + η
ln β

+
(1− r)(1− η)

ζ + η(1− r) + r
ln γi

+
1− η

ζ + η
ln δ (174)

ln αi, ln x∗i , ln y∗i are jointly normal with covariance matrix:
σ2

α

(1−r)σ2
α

ζ+η(1−r)+r
(1−r)2(σ2

α+(1+ζ)2σ2
γ)

(ζ+η(1−r)+r)2 +
(1+ζ)2σ2

β+(1−η)2σ2
δ

(ζ+η)2

σ2
α

ζ+η(1−r)+r
(1−r)(σ2

α+(1−r)(1−η)(1+ζ)σ2
γ)

(ζ+η(1−r)+r)2 +
(1−η)(1+ζ)σ2

β+(1−η)2σ2
δ

(ζ+η)2
σ2

α+(1−r)2(1−η)2σ2
γ

(ζ+η(1−r)+r)2 +
(1−η)2

(
σ2

β+σ2
δ

)
(ζ+η)2


(175)

To determine the amount of consumption and labor freedom, we
employ two important facts. First, mutual information is invariate
under homeomorphisms (Kraskov, Stögbauer, & Grassberger, 2004) and
therefore the mutual information of the logarithms of the variables is
identical to the mutual information between the variables themselves.
Second, for jointly normal variables, the mutual information between two
variables x, y can be conveniently calculated by MI(x, y) = −1

2 ln[1−
corr(x, y)2]. Calculating the correlation between αi and x∗i and between
αi and y∗i therefore yields the Propositions 1 and 2. Proposition 3 follows
directly from the first order conditions of maximizing labor freedom
with respect to r.

To derive Proposition 4, we employ the conditioning property of mu-
tual information: MI(x, (y, z)) = MI(x, y)+ MI(x, z|y) where MI(x, z|y)
is the expectation (with respect to y) of the mutual information between
x and z using the conditional distribution of x and z given y. The closed
form expression for the conditional mutual information between αi and
x∗i given y∗i would not fit this page but can be easily calculated using
symbolic mathematics software. After cancelling terms, we obtain the
value of the freedom measure:

−(1/2) ln[
σ2

δ (−1 + η)2

σ2
α + σ2

δ (−1 + η)2
]. (176)
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