
Determinants of the Group-Size Paradox∗

Martin Kolmar†, Hendrik Rommeswinkel‡

August 6, 2014

Abstract

This paper analyzes the occurrence of the group-size paradox in situations in which

groups compete for rents, allowing for degrees of rivalry of the rent among group mem-

bers. We provide two intuitive criteria for the group-impact function which for groups

with homogeneous valuations of the rent determine whether there are advantages or dis-

advantages for larger groups: social-interactions effects and returns to scale. For groups

with heterogeneous valuations, the complementarity of group members’ efforts and the

composition of valuations are shown to play a role as further factors.
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1 Introduction

The group-size paradox is perceived as being a result of an unresolved free-rider problem

between group members that becomes the more accentuated the larger the group is. Olson

(1965) already discussed the alleged advantage of small interest groups over larger ones. His

arguments gave rise to a debate about the so-called group-size paradox, which Esteban and

Ray (2001) define as: “larger groups may be less successful than smaller groups in furthering

their interests” (p.663).

The starting point of our paper is to ask which properties of a conflict environment

between groups explain the relative advantage or disadvantage of larger compared to smaller

groups. We focus on three properties of the group impact function:1 social-interactions effects,

returns to scale, and complementarities between group-members’ efforts. As will become clear

throughout the paper, all three technological factors are independent. Since we also allow

group members to differ in valuations within the group, a fourth crucial property will be the

heterogeneity of the valuations of a group. In order to analyze the impact of group size on

group performance we use a comparative-static approach where we ask for the effect of adding

an additional set of group members to a given group.2 The main contribution of the paper is

the complete characterization of the influence of the above factors on the group-size paradox.

Whereas returns to scale, complementarities in efforts and heterogeneity of valuations are

standard concepts, the use of the term social-interactions effects has to be clarified.3 We say

that (positive or negative) symmetric social-interactions effects exist if group impact changes

in group size while holding the total group effort constant and distributing it evenly among

the group members. There are diverse causes for social-interactions effects in contests such as

returns to the division of labor, network effects among group members, or learning between

group members.

If group members have equal valuations of winning the contest (which may still differ

between groups), returns to scale and symmetric social-interactions effects completely deter-

1Impact functions are defined as the functions with which individuals transform effort into relative chance

of success in a contest (Wärneryd, 2001). Group impact functions correspondingly play the role of production

functions with which group members jointly “produce” a higher relative chance of their group winning the

contest.

2In Appendix K we show that this approach yields the same results as a comparison between groups and

argue that it is slightly more general.

3The term “social-interactions effect” has a number of different meanings in the literature. Definitions reach

from the very narrow concept of direct interdependencies between preferences (Scheinkman, 2008; Bernheim,

1994; Akerlof, 1997) to the very wide concept of aggregative games (e.g. Manski, 2000).
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mine whether the group-size paradox occurs or not.4 Social-interactions effects work in the

predictable way: positive symmetric social-interactions effects ceteris paribus make it less

likely that the group-size paradox occurs. Returns to scale play the role of the discriminatory

power of the contest and may thus favor either smaller or larger groups, depending on whether

the valuation of winning the contest decreases or increases with group size.

Despite the fact that there is a growing interest in the influence of heterogeneity within

and between groups5, with only a few exceptions the literature on group contests6 has either

focused on homogenous individuals or on situations where the effort levels of group members

are perfect substitutes, i.e. are aggregated by summation. For the analysis of the case of

heterogeneous individuals, this paper employs CES-impact functions with varying degrees

of complementarity. In order to analyze this case, we were able to characterize two useful

technical properties that help to simplify future research on group conflicts and comparative

statics for CES production functions in general. First, the generalized-mean structure of the

impact functions maps onto a generalized mean structure of the valuations of group members

that explains equilibrium behavior. This is a quite useful technical property because it allows

to analyze the impact of the composition of valuations within a group on group performance

using properties of generalized means. Second, we derive a theorem for comparative statics

of the elasticity of substitution for a ratio of two generalized means over vectors that differ in

heterogeneity. This theorem helps us perform comparative statics in the present model, but is

applicable in any other setting where such ratios occur, for example New Keynesian models

of inflation, where the inflation rate is a ratio of two CES aggregates.

The effect of adding additional individuals to a group (“new” group members as opposed

to “old” ones) depends on the relationship between social-interactions effects and returns to

scale on the one hand, and the ratio of power means of the valuations of the group with

smaller and larger group size on the other hand. The latter effect is new, and we further

explore how adding new group members influences this power mean. As a general conjecture

that follows from the above results one would expect that the group-size paradox becomes

more likely for higher levels of complementarity between group-members’ efforts if adding new

group members to an additional group makes the extended group weakly more heterogeneous.

Our paper is most closely related to Esteban and Ray (2001) who argue that in a contest

4This claim may appear to be at odds with Esteban and Ray (2001) who focus on convexities in the cost-of

effort functions. However, their model is isomorphic to a model with linear costs and nonlinear impact functions

that is a special case of our model.

5See Esteban and Ray (2008, 2010).

6The literature on contests between groups has recently been surveyed by Corchón (2007, Section 4.2),

Garfinkel and Skaperdas (2007, Section 7), and Konrad (2009, Chapters 5.5 and 7).
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between groups of different sizes, larger groups may profit from cost advantages if the costs

of effort are sufficiently convex. In this case, ceteris paribus, members of larger groups face

sufficiently lower marginal costs that reverse the group-size paradox. This is a very important

insight that helps to explain the prevalence of groups in conflicts.7 Our model differs from the

model by Esteban and Ray (2001) in several ways. First, we take a comparative-statics view

on the group-size paradox instead of a comparison between groups. As we show in Appendix

K, this approach is slightly more general. Moreover, it allows us to transfer our results and

methods to other collective action problems as we show in Appendix L. Second, we allow

for heterogeneous valuations within a group. Third, given that the model by Esteban and

Ray (2001) is isomorphic to a specific contest model with linear costs and impact functions

which are sums of concave functions of efforts (Siegel, 2009), their model is a special case

of the model analyzed in this paper. In addition, our results are directly relevant for models

of Cournot-competition in oligopolistic markets with hyperbolic demand if firms consist of

teams (Raab & Schipper, 2009) and team output is some (in general nonadditive) function of

team-members’ efforts.

The paper is organized as follows. We introduce the model in Section 2 and cover the case

of homogeneous group members in Section 3. In Section 4 we allow for heterogeneity of agents

and use a CES type impact function to aggregate group members’ efforts. We characterize the

simultaneous Nash equilibrium and we show the effect of complementarity on the group-size

paradox for heterogeneous agents. Section 5 concludes.

2 The model

Assume that n groups compete for a given rent. Let m ∈ N be the maximum possible number

of group members and let mi ∈ 2, . . . ,m be the number of individuals in group i where k

is the index of a generic member of this group. We refer to the set of group members by

Mi = {1, . . . ,mi}. The rent can be completely rival or completely non-rival between group

members, and every intermediate case where additional group members dilute the value of

the rent for the remaining group are also taken into consideration. To cover these cases it

suffices to assume that the valuation of the rent for each individual k of group i is a function

of the size of the group, vki (mi) > 0. If vki (m̂i) < vki (mi), whenever m̂i > m̃i, then the rent

is partly rival among group members as some degree of crowding is involved as group size is

7See also Marwell and Oliver (1993); Pecorino and Temini (2008); Nitzan and Ueda (2009, 2010).
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increased. If vki (m̂i) = vki (mi) for all m̂i,mi the rent is a group-specific public good8. In the

following it will be assumed that vki (m̂i) ≤ vki (mi) whenever m̂i > mi.
9

Sometimes it will be necessary to refer to vectors of valuations of (subsets of) the group

members: ~vi,M (mi) ≡ (vk1i (mi), . . . , v
k♯M
i (mi)) where M ⊂ Mi and vk1i (mi) refers to the

valuation of the first element of M .10 This somewhat elaborate notation is necessary since

later on we will analyze comparative statics if sets of individuals are added to a group. It is

the easiest to think of ~vi,M (mi) as the vector of valuations of a subset of group members M

of group i if the total group size is mi.

pi represents the probability of group i = 1, ..., n to win the contest. Individuals can influ-

ence the winning probability by contributing effort xki . The group members’ efforts are then

aggregated by a function qi(x
1
i , ..., x

mi
i ) = qi(~xi) ≥ 0. Following the literature, it will be called

impact function. Since we are most of the time interested in comparative statics with respect

to the size of a single group, we define a class of impact functions for this group to specify the

impact functions which are used at different sizes of the group {qi,mi(x
1
i , ..., x

mi
i )}mmi=2. The

winning probability pi is a function of these impacts. pi(.) is called a contest-success function.

We focus on Tullock-form contest-success functions where the winning probability of a group

i is defined as:11

Assumption 1.

pi(q1, ..., qn) =











qi
∑n

j=1 qj
, i = 1, ...n, ∃j : qj > 0

1

n
, ∀j : qj = 0

.

Further, we impose the following assumptions on the individuals:

Assumption 2. Individuals are risk neutral, face linear costs, and maximize their net rent.

8See Cornes and Sandler (1996) for a precise and ample discussion of different types of public goods with

crowding. Note that the linear case (as for example in Esteban & Ray, 2001) vki = α w
mi

+ (1− α)w′, where w

is the utility from the rival dimensions (with an equal-sharing rule being applied) of the rent and w′ the utility

from the non-rival part, is a special case of our formulation.

9It is also possible to consider other cases, but for reasons of space these will only shortly be discussed.

10To illustrate this notation assume that group i has three members, mi = 3 and Mi = (1, 2, 3) with

valuations v1i (3) = 5, v2i (3) = 10, v1i (3) = 15. Let M ′ = (1, 2) and M ′′ = (2, 3) be two subsets of group

members. Then, ~vi,M′(3) = (5, 10) and ~vi,M′′(3) = (10, 15).

11An axiomatic foundation for the Tullock function for group contests can be found in Münster (2009). An

interpretation of the Tullock contest as a perfectly discriminatory noisy ranking contest can be found in Fu

and Lu (2008).

4



Assumptions 1 and 2 imply that we can write expected utility as:

πk
i (x

k
i , ~x−xki

) =
qi(x

1
i , ..., x

mi
i )

∑n
j=1 qj(x

1
j , ..., x

mj

j )
vki (mi)− xki . (1)

We are looking for Nash equilibria of this game where individuals choose their effort xki

simultaneously to maximize their expected utility,

xk∗i ∈ argmax
xki

πk
i (x

k
i , ~x

∗
−xki

) ∀i, k. (2)

where “∗” refers to equilibrium values and ~x∗
−xki

to the vector of efforts by all individuals

except k in group i. In order to facilitate the analysis, we will focus on situations where

a unique Nash equilibrium with respect to the total effort produced by each group exists.

Formally,

Assumption 3. qi(.) is at least twice continuously differentiable,

∀k, ~xi:
∂q(~xi)

∂xki
> 0,

∀k, ~xi:
∂2q(~xi)

∂(xki )
2 ≤ 0, and

∀λ ≥ 1, k, ~xi: qi(λ~xi) ≤ λqi(~xi).
12

Assumption 4. qi(.) has symmetric partial derivatives at {x, ..., x}, i.e. ∂qi(x, ..., x)/∂x
k
i =

∂qi(x, ..., x)/∂x
l
i ∀x ∀ k, l ∀ i

Assumption 5. If ~xi is such that xki > xli, then
∂qi(~xi)

∂xki
< ∂qi(~xi)

∂xli
.

In some of the below results we also need the assumption that the impact functions are

homogeneous.

Assumption 6. qi(.) is homogeneous of degree ri, i.e. ∀λ ≥ 0, ~xi: qi(λ~xi) = λri · qi(~xi).

12These assumptions rule out impact functions with for example hyperbolic (Cobb-Douglas) or L-shaped

(perfect complements) indifference curves. Impact functions with ∂qi(0, ..., 0)/∂x
k
i = 0 usually lead to multiple

equilibria because {0, ..., 0} at the group as well as as the aggregate level is always a Nash equilibrium. See

Skaperdas (1992) for an extensive discussion in a somewhat different context. This would cause additional and

merely technical problems that would divert attention from the main focus of the paper.
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3 Homogeneous valuations within groups

Before we turn to the analysis of the effects of group size on winning probabilities, we establish

that a unique equilibrium exists. A proof of existence of a Nash equilibrium cannot rely

on standard fixed-point arguments because with a Tullock lottery contest the best-response

function for an individual k of group i are not well defined if all other groups exert zero effort,

and the alternative approach to make use of the aggregative nature of contests does not work

because group contests lack such an aggregative structure.13 The proof of this and all of the

following results can be found in the appendix.

Theorem 1. Suppose a contest fulfills Assumptions 1, 2, 3, and 4 for all groups i. Then, a

Nash equilibrium exists where the equilibrium efforts are symmetric such that ∀i, k : xk∗i = x∗i .

There exists only one symmetric equilibrium given ∀i, k : xk∗i = x∗i .

Therefore, under the given assumptions there may exist other, nonsymmetric equilibria.

Using a stronger assumption instead of Assumption 4 we obtain a unique equilibrium:

Theorem 2. Suppose a contest fulfills Assumptions 1, 2, 3, and 5 for all groups i. Then,

there exists a unique Nash equilibrium.

Since Assumption 4 is weaker than 5, some cases are of course not covered by the latter

theorem. Most prominent is the case of additive impact functions where infinitely many

equilibria exist in which only the level of total effort of each group is fixed.

In some cases, a group may decide to exhibit zero effort, which implies that it makes sense

to distinguish between active and inactive groups:

Definition 1. (Participation) An individual k of group i is said to participate if xk∗i > 0.

A group i is said to participate if there exists some k such that xk∗i > 0. A group is said to

fully participate if ∀k : xk∗i > 0.

The group-size paradox was first discussed by Olson (1965), who stated that “the larger

the group, the farther it will fall short of providing an optimal amount of a collective good” (p.

35). One particular interpretation of the statement has been given by Esteban and Ray (2001):

In a contest environment in which different groups compete for a rent, larger groups should

win with lower probability if the group-size paradox was true. We take a comparative-static

perspective on the group-size paradox:

13See Acemoglu and Jensen (2009) for a definition of aggregative games.
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Definition 2. (Group-size paradox) Suppose there are n groups competing for a prize

and each group j 6= i consists of a set Mj = {1, . . . ,mj} of individuals with equal valuations

vj . Let group i have either members Mi = {1, . . . ,mi} or M̂i = {1, . . . , m̂i} with mi < m̂i

with valuations vi(mi) and vi(m̂i), respectively. Let the corresponding equilibrium winning

probabilities be p∗i and p̂∗i . Then the group-size paradox holds strictly (weakly) for group i at

sizes mi and m̂i if and only if p∗i > (≥)p̂∗i .

In order to have a simple language we will refer to Mi as the “old” group members and

to Ξi = M̂i/Mi as the “new” group members in the following. The definition of the group

size paradox is therefore local with respect to the original group size mi and the size of

the group after the increase in group members, m̂i. We will give precise conditions under

which the group-size paradox occurs but it may well be the case that an impact function

is such that the group size paradox only occurs for small group sizes but not for large ones

or vice versa. One can naturally also take the perspective of a comparison across groups of

different size in the same contest. In Appendix K, we show for all propositions in this paper

that the comparative static perspective on the group size paradox yields the same results as

a comparison of winning probabilities across groups. However, for some cases that can be

analyzed via the comparative-static perspective, no corresponding contest exists which can

be analyzed by comparing groups of different size in the same contest. Moreover, using our

approach one can also analyze the group-size paradox in other collective action problems, as

we show in Appendix L.

We will also consider welfare effects and their relation to the group size paradox.

Definition 3. (Group Welfare) The total group welfare is defined as the sum of expected

utilities πT
i =

∑

k∈Mi
πk
i (x

k∗
i , ~x∗

−xki
) and the average group welfare is defined as πA

i = 1
mi

πT
i .

Next we formulate two intuitive criteria that will turn out to be able to explain the

occurrence of the group-size paradox if individuals of a group have identical valuations of the

rent. The first one defines the concept of social-interactions effects for within-group symmetric

effort contributions.

Definition 4. (Symmetric Social-interactions effects (SSIE)) A class of impact func-

tions {qmi(x
1
i , . . . , x

mi
i )}mmi=2 with mi being the number of group members is said to have

absent (positive, negative) symmetric social-interactions effects at effort level xi for an in-

crease in group size from mi to m̂i if it holds that qm̂i
(ximi

m̂i
. . . ximi

m̂i
) = (>,<) qmi(xi, . . . , xi).

Definition 4 can be used to define a measure of SSIE:

7



Definition 5. For a class of impact functions, {qmi(x
1
i , . . . , x

m
i )}mmi=2, SSIE are measured

by si(xi,mi, m̂i) = qm̂i
(ximi/m̂i, . . . , ximi/m̂i)/qmi(xi, . . . , xi). SSIE are absent (positive,

negative), if and only if si(xi,mi, m̂i) = (>,<) 1.

Note that SSIE are defined as a local measure and may change for different values of xi,

mi, and m̂i. If impact functions are homogeneous, then si(. . . ) does not depend on xi and

can be written as si(mi, m̂i).

To gain intuition it is instructive to look at an impact function that is the sum of efforts of

all group members,
∑mi

k=0 x
k
i . This function has absent SSIE: If all group members k exert the

same effort xki = xi, then
∑mi

k=1 xi = mi · xi =
∑m̂i

k=1 ximi/m̂i. In this case, adding additional

group members has no influence on the productivity of the group, social-interactions effects

are absent.

Another property of an impact function is its returns to scale:

Definition 6. (Returns to scale (RTS)) A class of impact functions {qmi(~xi)}
m
mi=2 is said

to have constant (increasing, decreasing) returns to scale if ∀mi : qmi(λ~xi) = (>,<) λ ·qmi(~xi)

where λ > 0.

Based on this definition, it is plausible to measure returns to scale in the following way:

Definition 7. For a class of homogeneous impact functions, {qmi(~xi)}
m
mi=2, returns to scale

are measured by the degree of homogeneity ri, such that for all mi: qmi(λ~xi) = λri · qmi(~xi)

Note that Definition 7 immediately implies that if we speak of a class of impact functions

having certain returns to scale, each of the impact functions of this class has the same returns

to scale. Further, since we focus on concave impact functions (see Assumption 3), the results

will only be stated for decreasing or constant returns to scale. However, our results also hold

in those cases where even with increasing returns to scale there still exists a unique interior

equilibrium. One example would be the case of two groups with symmetric valuations vi = vj

and ri = rj < 2.

Both properties, SSIE and RTS are independent: Assume that the impact functions have

the generalized CES-form

qmi(~xi) = msi+ri
i ·

(

1

mi

∑

(

xki

)γi
)ri/γi

. (3)

In this case, qm̂i
(ximi

m̂i
, . . . , ximi

m̂i
) = (m̂i/mi)

si · qmi(xi, . . . , xi) and qmi(λxi, . . . , λxi) =

λriqmi(xi, . . . , xi), which shows that RTS and SSIE can be chosen independently.
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Before presenting the main results of this section it makes sense to discuss them infor-

mally. In the graphs in Figure 1, RTS are measured along the ordinate and SSIE, which are

independent of efforts under Assumption 6, are measured along the abscissa. At the point

{1, 1}, SSIE are absent and RTS are constant. Moving right from this point creates positive

and moving left creates negative SSIE, moving downwards reduces RTS.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

si si

ri ri

Figure 1: Group-size paradox for the case of a non-rival rent (left) and for the case of crowding (right).

The left panel of Figure 1 focuses on the special case that the rent is a pure public good

among group members. In the case of a perfectly non-rival rent, only SSIE turn out to be

relevant for the occurrence of the group-size paradox: the winning probability decreases in

group-size in the left quadrant (shaded gray) whereas it increases in group size in the right

quadrant (shaded white).

Allowing for crowding makes the group-size paradox more likely, due to the dilution of

per-capita rents that follows from increases in group-size. The separating line moves to the

right compared to the case of a pure public good and is given by the upward-sloping line in

the right panel of Figure 1. The group-size paradox again holds in the gray shaded areas of

the figure, which means the RTS now also play a role. The adverse effect of crowding must be

compensated by an increase in SSIE, and the increase has to be the stronger, the larger the

RTS. This is due to the fact that the RTS of the impact function control the discriminatory

power of the contest with respect to the average valuation of that group. If due to crowding

there is an inherent disadvantage from larger group size, then this disadvantage is amplified

by higher RTS.

Though unlikely, we can also imagine cases where an increase in group size leads to an

increase in the valuation. In this case, the RTS will favor the larger group, as evident from

the dotted line in Figure 2.

This is again due to the role of the RTS as the discriminatory power, which amplifies the

9
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0.0

0.2

0.4
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0.8
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si
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Figure 2: Group-size paradox for increasing rivalry of the rent.

effect of differences in valuation on the winning probabilities. Since larger groups have higher

valuations than smaller ones, they are favored by large RTS and therefore the larger the RTS,

the lower the SSIE must be in order for the group-size paradox to occur. Figure 2 also shows

the effect of an increase in rivalry on the occurrence of the group-size paradox. The dividing

line pivots clockwise around the point of zero RTS and absent SSIE. The more rival the rent

becomes, the higher the level of SSIE that is necessary to compensate for the increase in the

dilution of the rent.

We now turn to the formal presentation of the results.

Proposition 1. Consider two contests fulfilling Assumptions 1, 2, 3, and 4 for all groups,

which differ only in the group size of group i, mi and m̂i > mi. For all j, k: vkj = vj and let

the equilibrium winning probabilities in the symmetric equilibrium be p∗i and p̂∗i , respectively.

Group i participates at group size mi with effort level x∗i . The class of impact functions of

group i has si(x
∗
i ,mi, m̂i) = 1 and constant or decreasing RTS. If vi(mi) = vi(m̂i), then

p∗i = p̂∗i , π
A
i < π̂A

i , and πT
i < π̂T

i . If vi(mi) > vi(m̂i), then p∗i > p̂∗i and ∃vi(m̂i) : π
T
i ≥ π̂T

i .

The case of a pure public good establishes a link between our model and the special case of

additively linear impact functions which have been standard in the literature so far (e.g. Baik,

2008; Konrad, 2009, Chapters 5.5 and 7). For the case of non-rival rents, the equilibrium group

impact and the winning probability are independent of group size as long as the valuation

remains unchanged. This leads to a welfare advantage for larger groups. If rents are rival,

the increasing dilution of rents (and therefore lower marginal returns) for larger group sizes,

bring larger groups into a worse position. If the rent is sufficiently rival, both total and average

welfare will decrease after an increase in group size.

The results on the group-size paradox can be strengthened if we assume that the impact
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functions are homogeneous and allow for SIE. However, welfare effects will be less clear in

this case:

Proposition 2. Consider two contests fulfilling Assumptions 1, 2, 3, and 4 for all groups,

which differ only in the group size of group i, mi and m̂i > mi. For all j, k: v
k
j = vj and let the

equilibrium winning probabilities in the symmetric equilibrium be p∗i and p̂∗i , respectively. The

class of impact functions {qmi(.)}
m
mi=2 fulfills Assumption 6 with si(mi, m̂i) as the measure

of SSIE. Suppose group i participates at group size mi. Then:

p∗i R p̂∗i ⇔
vi(mi)

vi(m̂i)
R si(mi, m̂i)

1/ri (4)

πA
i R π̂A

i ⇔ p∗i vi(mi)

(

1− (1− p∗i )
ri
mi

)

R p̂∗i vi(m̂i)

(

1− (1− p̂∗i )
ri
m̂i

)

(5)

πT
i R π̂T

i ⇔ p∗imivi(mi)

(

1− (1− p∗i )
ri
mi

)

R p̂∗i m̂ivi(m̂i)

(

1− (1− p̂∗i )
ri
m̂i

)

. (6)

In other words, if for some class of impact functions the group-size paradox holds, then

increasing the RTS or decreasing the SSIE further will imply that the group-size paradox still

holds if the rent is partly rival. The reverse holds for classes of impact functions for which the

group-size paradox does not hold: With crowding, decreasing the RTS or increasing the SSIE

will imply that for the new class of impact functions, the group-size paradox also does not

hold. It also follows from the proposition as a corollary that RTS play no role in the case of

non-rival rents, since in that case the LHS of (4) equals one. In the case of vi(mi) < vi(m̂i),

the effect of the SSIE remains the same, but the effect of the RTS is opposite: If for some class

of impact functions the group-size paradox holds, then it will ceteris paribus continue to hold

under lower RTS, but not necessarily under higher RTS. An example where vi(mi) < vi(m̂i)

is meaningful is the case when groups can rely on mechanisms to internalize within-group

externalities.14

Solving (4) for ri further reveals that (a) the locus of RTS–SSIE pairs that constitute the

dividing line between group-size paradox and no group-size paradox has a positive slope in

Figures 1 and 2 and (b) an increase in the privateness of the rent shifts this dividing line in

the direction of either more increasing SSIE and/or lower returns to scale as seen in Figure 2.

14Suppose a group has access to a mechanism solving its collective action problem. In this case, agents

fully internalize their effect on the payoff of others and thus optimize as if their valuation of the rent were

vi(mi) =
∑mi
k=1 v

k
i (mi). Therefore, equilibrium efforts (and thus winning probabilities) will be equal to those

obtained in a contest with a homogeneous group and valuations vi(mi). If the rent is not too rival and the

new group members’ valuations are not too low, we will further have vi(mi) < vi(m̂i) and thus the described

case. For details see Kolmar and Wagener (2011).
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The above analysis shows that SSIE and RTS fully explain the occurrence of the group-size

paradox if individuals of the same group have the same valuation of the rent. They enable us

to understand how the technological and cultural determinants of group impact influence the

relative success of larger or smaller groups.15 For the non-rival case, the case of absent SSIE

is the watershed for the existence of the group-size paradox so that this very simple rule is

easy to check empirically. In case that dilution is important, empirical tests are more difficult

because the quantitative extent of SSIE becomes important, but it nevertheless gives a clear

guideline.

The welfare effects do not follow such a clear pattern, since we cannot solve for them

explicitly. While it is obvious that an increase in winning probability ceteris paribus increases

average and total group welfare, it becomes clear from setting p∗i = p̂∗i in (6), that even

for equal winning probabilities it is not clear whether πT
i > π̂T

i or the opposite holds. Also,

the public good case where in Proposition 1 larger groups still held an advantage may have

πT
i > π̂T

i if SIE are sufficiently low.

4 Heterogeneous valuations within groups

While the literature on the group-size paradox has focused on the case of homogeneous groups,

we will now proceed to examine the heterogeneous case. Naturally then, the above mentioned

connection between an analysis relying on cost functions and one allowing for more general

impact functions with SSIE and RTS as the main properties no longer holds. Since individuals

may have different valuations, they may end up with different marginal returns on impact

to effort. The following analysis however establishes that SSIE and RTS continue to play the

same role, thus generalizing the results from the previous section. We also introduce a further

parameter that will gain importance, the complementarity between members’ efforts, whose

effect depends on the heterogeneity of the new and old group members.

To simplify the analysis, we concentrate on a CES impact function with SSIE given by

si(mi, m̂i) = ( m̂i
mi

)si and RTS ri. These properties are fulfilled by the following CES-type

impact function:16

15In Appendix L we show that this also holds for voluntary contriution games as Bergstrom, Blume, and

Varian (1986).

16It could be argued that a class of impact functions should fulfill a condition such as ∀mi, m̂i :

qmi(x
1
i , . . . , x

mi
i ) = qm̂i (x

1
i , . . . , x

mi
i , 0, . . . , 0). We do not require (and indeed violate) this for the following

reason: Consider 100 individuals participating in a demonstration. It may matter for their impact on policies

a lot whether they belong to a group of 100 or 1000 individuals affected by that policy. The notion of com-

plementarity captures this: High complementarity means that an interest group of 1000 individuals will only

12



Assumption 7. qi(x
1
i , ..., x

mi
i ) = msi+ri

i ·
(

∑mi
l=1

1
mi

(xli)
γi
)ri/γi

, γi ∈ (0, 1), ri ∈ (0, 1], si ∈ R

i = 1, ...n.

γi accounts for different elasticities of substitution of the group members’ efforts.17 Since the

CES-type impact function is essentially a power mean of the contributions, and power means

will play an important role in the following, it is useful to introduce them formally:

Definition 8. (Power Mean) If ~a is a vector with s elements a1, a2, . . . , as, then the θ-power

mean of ~a is defined as:

M(~a, θ) ≡

(

s
∑

i=1

aθi
s

)1/θ

. (7)

Therefore, we can express the CES-type impact function as: qi(~xi) = msi+ri
i ·M(~xi, γi)

ri . To

analyze the interplay of γi and the heterogeneity of a group, one needs a tractable definition

of heterogeneity. The most common idea associated with higher heterogeneity is that of a

mean-preserving spread:

Definition 9. A vector ~v = (v(1), . . . , v(m)) is a θ-power mean preserving spread of a vector

~v′ = (v′(1), . . . , v′(m)) if there exist i, j such that v(i) > v′(i) ≥ v′(j) > v(j) with M(~v) = M(~v′)

and v(k) = v′(k) for all k 6= i, j.

The definition of a power mean preserving spread differs from mean preserving spreads by

Rothschild and Stiglitz (1970) in two important ways: First, it is generalized to power means

since – as discussed before – an arithmetic mean preserving spread of valuations is not always

neutral to the winning probability of a group. Second, it is restricted by the assumption of

equal weights of each element, since in the CES impact function employed here, all individual

efforts have equal weights. We may want to compare groups with different average effort

levels and thus employ a slightly more general definition of heterogeneity than power mean

preserving spreads:

Definition 10. ~v′ is more heterogeneous than ~v at mean parameter θ if ~v′ is a permutation

of ~v′′ · ω where ω ∈ R
+ and ~v′′ can be obtained from a sequence of θ-power mean preserving

spreads of ~v.

have an impact if all individuals demonstrate and not only a subset. The above condition however violates this

intuition.

17We restrict attention to γi ∈ (0, 1) to guarantee uniqueness of the equilibrium. If γi ≤ 0 multiple equilibria

can occur because of a within-group coordination failure: If at least one group member exerts zero effort, group

impact is zero and it is rational for the other group members to also exert zero effort. However, Propositions

3 and 4 continue to hold for γi ≤ 0 in all but the extreme equilibrium where all members of all groups exert

zero effort.
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According to this definition, a vector is more heterogeneous if it can be obtained from another

vector via the application of power mean preserving spreads and multiplying it with a positive

constant. From the definition of heterogeneity, the following theorem follows.

Theorem 3. Suppose ~v′ is more heterogeneous than ~v at power mean parameter θ, then:

θ R φ ⇔
M(~v′, θ)

M(~v, θ)
R M(~v′, φ)

M(~v, φ)

While this theorem will be applied in the context of contests in this paper, it is applicable in

many other settings with heterogeneity and CES aggregates. For example, it also applies to

ratios of price indices Pt+1/Pt in models with monopolistic competition and heterogeneous

producers (e.g. New Keynesian models such as Yun, 1996). Theorem 3 can be used in these

contexts to analyze the effects of changes in the elasticity of substitution on the inflation

measure if heterogeneity differs across periods. Similarly, growth rates of consumption in

models with CES production functions can be analyzed.

It follows from Assumptions 1, 2, and 7 that the individual expected utility functions are

as follows:

πk
i (x

1
1, ..., x

mn
n ) = vki (mi)

msi+ri
i · M(~xi, γi)

ri

∑

j m
sj+rj
j ·M( ~xj , γj)rj

− xki . (8)

The Nash equilibrium of this model can only be obtained explicitly for the case ri = 1.18

For ri < 1 it turns out that comparative statics results can still be derived. We proceed as

follows: First, existence and uniqueness of the Nash equilibrium will be proven. Second, it

will be shown that the winning probability of a group is strictly increasing in an aggregate

valuation Vi of the group (to be determined). This reduces the question of whether the group-

size paradox holds to the question whether Vi increases or decreases after adding a set of

individuals to the group. Third, we will examine how various combinations of heterogeneity

and complementarity affect Vi.

Theorem 4. Suppose a contest fulfills Assumptions 1, 2, 7 for all groups. Then, a unique

Nash equilibrium exists in which ∀ri < 1 all groups fully participate and ∀ri = 1, n∗ ≥ 2

groups fully participate.

Having established existence and uniqueness of the Nash equilibrium, we can now turn to

the comparative-static analysis. It follows from the proof of Theorem 4 that if Q∗ is the

equilibrium total impact, the following equilibrium relation must hold for all participating

18These results are given in Kolmar and Rommeswinkel (2013). For our purposes, explicit results are not

necessary.
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groups i with members Mi:

Vi · (1− p∗i ) = (Q∗)1/ri · (p∗i )
1/ri−1, (9)

where Vi ≡ rim
si/ri
i · M(~vi,Mi(mi),

γi
1−γi

). Notice that (as discussed in Section 2) ~vi,Mi(mi) is

a vector valued function of total group size mi. For example, if there are three members in

Mi, then ~vi,Mi(5) would give the vector of valuations which these three members would have

if the actual group size was five. M(~vi,Mi(mi),
γi

1−γi
) is then a power mean of these valuations.

In the following the term “average valuation” will refer to this power mean (which does

not have to coincide with the arithmetic mean). There is a tight relation between changes in

p∗i and Vi which we can use for comparative statics of our model:

Theorem 5. Consider two contests fulfilling Assumptions 1, 2, 7 for all groups, which differ

only by the set of group members of group i, Mi and M̂i and their valuations ~vMi, ~vM̂i
,. Let the

equilibrium winning probabilities in each equilibrium be p∗i and p̂∗i , respectively. Then, p
∗
i ≥ p̂∗i

if and only if Vi ≥ V̂i.

The above theorem holds for changes in valuations and group size from Mi to M̂i. Hence, we

can obtain comparative-static results on p∗i by only examining the effect of a change in group

size on Vi. The question whether a change in group size increases or decreases the winning

probability of that group reduces to whether the change in group size increases or decreases

Vi. This is a noteworthy result because it implies that the strategic interaction between groups

has no qualitative influence on the comparative-static properties of the model. We show this

in Appendix L by extending our results to voluntary contribution games with linear costs of

effort.

The following proposition summarizes the effect of adding a set of individuals Ξi to group

i on its winning probability:

Proposition 3. Consider two contests fulfilling Assumptions 1, 2, 7 for all groups, which

differ only by the set of group members Mi and M̂i = Mi ∪ Ξi. Let the equilibrium winning

probabilities in each equilibrium be p∗i and p̂∗i , respectively. Suppose group i participates at

group size mi. Then:

p∗i R p̂∗i ⇔
M(~vi,Mi(mi),

γi
1−γi

)

(

mi
m̂i

· M(~vi,Mi(m̂i),
γi

1−γi
)

γi
1−γi + (1− mi

m̂i
) ·M(~vi,Ξi(m̂i),

γi
1−γi

)
γi

1−γi

)

1−γi
γi

R si(mi, m̂i)
1/ri .

(10)

The proposition shows that the results for heterogeneous groups are very similar to the ones

derived for the case of homogeneous groups given in Proposition 2. However, because of the
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heterogeneity of the group, there is no longer an obvious choice for the valuation of the new

group members. The LHS of the above expression may therefore be smaller than one even

with crowding if high-valuation individuals join the group and the crowding effect is not

too strong. In this case, the effect of the RTS is opposite to the effect we have observed for

homogeneous groups: The higher the RTS, the lower the minimal SSIE such that the group-

size paradox does not occur. The addition of new group members with high valuations may

therefore compensate for average valuation losses due to crowding. With this exception, all

other results from the homogeneous valuation analysis carry over to the heterogeneous case.

The relaxation of the assumption of homogeneous valuations introduces another important

property which has an influence on the performance of large and small groups and that is

somewhat hidden in Proposition 3. The complementarity of efforts influences the degree to

which the new group members influence group effort.

To better understand the interplay of group heterogeneity and complementarity, we impose

a further assumption to simplify the LHS of (10):

Assumption 8. The valuation of an individual k in group i is given by vki (mi) = wk
i αi(mi),

where αi : N+ → R is a weakly decreasing function.

This assumption encompasses the often used functional form vki = αwk
i + (1 − α)wk

i /mi by

setting αi(mi) = α + (1 − α)/mi, where α denotes the fraction of the rent that is a public

good. Other functional forms are also possible, for example αi(mi) = 1/m1−α
i corresponds to

Cobb-Douglas preferences of the form vki = (wk
i )

α(wk
i /mi)

1−α. It is however restrictive in the

sense that it does not allow for heterogeneity in the way group members’ valuations respond

to additional group members which join the group: All valuations in the group are reduced

by a common factor.

Assumption 8 yields a natural measure for the degree of rivalry in the rent:

Definition 11. The degree of rivalry of the rent is measured by:

Ri(mi, m̂i) =
αi(mi)

αi(m̂i)
. (11)

Notice that Ri(mi, m̂i) ≥ 1 if we focus the analysis on public goods and rents that are partly

rival. Also, under homogeneous valuations, this ratio is equivalent to the LHS ratio in (4),

which neatly extends the homogeneous case.

Assumption 8 allows us to simplify (10) and obtain comparative statics on γi for cases

where new and old group members can clearly be ranked in their heterogeneity:
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Proposition 4. Consider two contests fulfilling Assumptions 1, 2, 7 for all groups, which

differ only by the set of group members Mi and M̂i = Mi ∪ Ξi. The valuations of Mi fulfill

Assumption 8. Let the equilibrium winning probabilities in each equilibrium be p∗i and p̂∗i ,

respectively. Suppose group i participates for the set of group members Mi.

a) Then:

p∗i R p̂∗i ⇔ Γ(γi,mi, m̂i, Ri(mi, m̂i), si, ri) R
M(~wi,Ξi ,

γi
1−γi

)

M(~wi,Mi ,
γi

1−γi
)
. (12)

where Γ(. . . ) ≡

(

m̂i
m̂i−mi

(

Ri(mi,m̂i)

si(m̂i/mi)1/ri

)

γi
1−γi − mi

m̂i−mi

)

1−γi
γi

.

b) Suppose ~wΞi is more heterogeneous than ~wMi at mean parameter γi
1−γi

. Then:

γi R γ′i ⇔
M(~wi,Ξi ,

γi
1−γi

)

M(~wi,Mi ,
γi

1−γi
)
R

M(~wi,Ξi ,
γ′
i

1−γ′
i
)

M(~wi,Mi ,
γ′
i

1−γ′
i
)

c) Then Γ(γi,mi, m̂i, Ri, si, ri) is weakly decreasing in γi, increasing in Ri, and decreasing in

si. It is strictly decreasing in γi if Ri 6= s
1/ri
i .

The occurence of the group-size paradox is therefore dependent on the behavior of Γi and the

ratio of power means on the RHS of (12). Γ(.) captures the complex interplay between the

rivalry of the rent Ri, social interaction effects si, returns to scale ri, and the complementarity

in efforts γi. Obviously, the SSIE and the rivalry of the rent have opposite effects, with high

SSIE making the group-size paradox less likely and higher rivalry making it more likely. This is

in line with our results from the first part. Γ(.) is decreasing in γi, which makes the group-size

paradox more likely under lower γi when not considering the effect on the RHS.

The effects on the RHS can easily be derived from Theorem 3. If Ξi is more heterogeneous

than Mi, the RHS of (12) will increase for a discrete increase in γi. We therefore know that in

case the new group members are less heterogeneous than the old group members, the effects

of γi the RHS of (12) and Γi will work in opposite directions and the total effect remains

undetermined. However, if the new group members are equally or more heterogeneous than

the former group members, a higher level of complementarity will make the group-size paradox

more likely to occur.

5 Concluding remarks

Some empirical findings support the existence of a group-size paradox, but as noted by Marwell

and Oliver (1993), it also stands in contrast to a significant body of empirical findings pointing

to a positive relationship between group size and group performance in conflicts. Oliver (1993)
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has complained that in most theoretical studies, the results on the group-size paradox depend

on some implicit assumptions that drive the result and that the theoretical understanding of

the problem is too weak to permit confident conclusions, especially in light of the fact that

empirical results reveal complex interactions that prevent simple generalizations. According

to our model one can expect that four crucial factors determine the effect of group size

on the outcome of a group contest: symmetric social-interactions effects, returns to scale,

complementarity between group members’ efforts, and the composition of their valuations in

case of heterogeneous valuations within groups. We are confident that our analysis helps to

clarify the different dimensions that contribute to the logic of collective action.

Appendix A: Proof of Theorem 1

For ease of notation, define Q−i =
∑

j 6=i qj(~xj) and Q =
∑

j qj(~xj). The first order conditions (FOCs) are:

Q−i

Q2
·
∂qi
∂xki

· vi(mi)− 1 ≤ 0 ∧ xki ≥ 0 ∧

(

Q−i

Q2
·
∂qi
∂xki

· vi(mi)− 1

)

· xki = 0 ∀ i, k. (A.1)

We start by showing that the first order conditions are sufficient conditions for an equilibrium. The second

order conditions for a local maximum are:

Q−i · vi(mi)

Q2

(

∂2qi(~xi)

∂(xki )
2

−
∂qi(~xi)

∂xki

2

Q

)

< 0

which holds for Q−i ≥ 0 and ∂2qi(~xi)

∂(xki )
2 ≤ 0, which holds by Assumption 3. Since the above concavity condition

holds for all xki ∈ [0,∞) we only need to verify that π(∞, ~x/xki
) ≤ π(xk∗i , ~x/xki

) and π(0, ~x/xki
) ≤ π(xk∗i , ~x/xki

).

Since the FOC is strictly decreasing in xki , we must have for all xki ∈ [0, x∗
i ):

∂πk
i (xki ,~x/xk

i
)

∂xki
>

∂πk
i (x∗i ,~x/xk

i
)

∂xki
. This

means profits are strictly increasing in xki over the interval [0, x∗
i ) and thus π(0, ~x/xki

) < π(xk∗i , ~x/xki
). Further,

since π(∞, ~x/xki
) = −∞ < 0 ≤ π(0, ~x/xki

) the solution to the FOCs indeed yields a global maximum of the

expected payoff for each player.

What is left to show is that there exists a unique solution to the system of FOCs given that ∀i, k : xk∗i =

x∗
i .

19 By Assumption 4 we have for all k, l: ∂qi(xi,...,xi)
∂xki

= ∂qi(xi,...,xi)

∂xli
. Therefore, if ∀i, k : xk∗i = x∗

i , then the

system of FOCs can be reduced to:

Q−i

Q2
·
∂qi(x

∗
i , . . . , x

∗
i )

∂x1
i

·vi(mi)−1 ≤ 0 ∧ x∗
i ≥ 0 ∧

(

Q−i

Q2
·
∂qi(x

∗
i , . . . , x

∗
i )

∂x1
i

· vi(mi)− 1

)

·x∗
i = 0 ∀ i. (A.2)

We furthermore have the following relation between Q, pi and xi:

pi =
qi(xi, . . . , xi)

Q
∧ p

i
(Q) =

qi(0, . . . , 0)

Q

19In a contest with qi(0, . . . , 0) = 0 at least two groups participate. Since we do no make this assumption, it

may be that all groups contribute zero effort because the starting advantage of one group is too large. However,

then at least one group will have qi(0, . . . , 0) > 0.

18



where p
i
(Q) is the lower bound on the winning probability given a specific Q. Since qi(xi, . . . , xi) is strictly

increasing in xi, we can solve this for xi(Q,pi) as long as Q > 0 and pi ≥ p
i
(Q). Finally, we can rewrite

∂qi(xi(Q, pi), . . . , xi(Q,pi))

∂xki
= ρ(Q,pi), ∀pi ≥ p

i
(Q)

which by Assumption 3 is weakly decreasing in Q and pi. The left equation of the Kuhn-Tucker conditions

then becomes:
1− pi
Q

· vi(mi) · ρ(Q,pi)− 1 ≤ 0, ∀i. (A.3)

Since ρ is weakly decreasing in Q and pi, the LHS of (A.3) is strictly decreasing in pi and Q. Further, for

pi → ∞, the LHS is negative while for pi = qi(0, . . . , 0)/Q it can be negative or positive. Therefore, for

each strictly positive Q there exists a unique pi ∈ [0,∞) which solves the Kuhn-Tucker conditions where

pi = qi(0, . . . , 0)/Q if vi(mi)/Q · ρ(Q, 0) ≤ 1 and pi = 1 if Q = 0. We can therefore form the function pi(Q) as

the solution to the FOC of each group i.

What remains to be shown is that a unique strictly positive Q∗ exists such that the winning probabilities

pi(Q
∗) sum to one. Notice that pi(Q) has the following properties: It is continuous, limQ→0 pi(Q) = 1 and

limQ→∞ pi(Q) = 0 and it is strictly decreasing. Therefore,
∑

i pi(Q) is also strictly decreasing, continuous and

has limQ→0

∑

i pi(Q) > 1 as well as limQ→∞

∑

i pi(Q) = 0. It follows by the intermediate value theorem that

a Q∗ ∈ (0,∞) exists such that
∑

i pi(Q
∗) = 1. Since

∑

i pi(Q) is strictly decreasing, this Q∗ is unique. Given

a unique Q∗, we can obtain unique solutions for pi(Q
∗) and thus x∗

i and via ∀i, k : xk∗i = x∗
i also for all xk∗i .

Appendix B: Proof of Theorem 2

First notice that Assumption 5 implies Assumption 4, i.e. we are only considering a subset of the impact

functions, therefore the results from the proof of Theorem 1 carry over. Since we thus know that the equilibrium

is unique given ∀i, k : xk∗i , we only need to show that under the more strict Assumption 5, any equilibrium

must fulfill ∀i, k : xk∗i .

From Assumption 5 we have that

xki > xli ⇔
∂qi(~xi)

∂xki
<
∂qi(~xi)

∂xli
.

Therefore, in equilibrium it can never be that case that xl∗i = 0 if xk∗i > 0 since then the above FOC (A.1) does

not hold for at least one group member. Thus, either ∀k : xk∗i = 0 or ∀k : xk∗i > 0. If x
k∗
i > 0 then inserting

the FOC for player k into the FOC for player l yields xk∗i = xl∗i and thus the desired condition.

Appendix C: A useful Lemma

Lemma 1. Suppose a contest fulfills Assumptions 1, 2, 3, and 4 for all groups. Further, ∀j, k : vkj (mj) =

vj(mj). Consider two within-group symmetric equilibria, which only differ by the group sizes mi 6= m̂i and/or

the impact functions, qmi (. . . ) 6= qm̂i(. . . ). Suppose group i participates under group size mi and impact

function qmi(. . . ) with winning probability p∗i . Let the winning probability under group size m̂i and impact

function qm̂i(. . . ) be p̂∗i . Then the following equivalence holds:

p∗i R p̂∗i ⇔ vi(mi)
∂qmi(x

∗
i , . . . , x

∗
i )

∂xki
R vi(m̂i)

∂qm̂i(x̂i, . . . , x̂i)

∂xki
(C.1)
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where x̂i is defined such that

qmi(x
∗
i , . . . , x

∗
i ) = qm̂i(x̂i, . . . , x̂i).

This Lemma has a very intuitive explanation: Iff for a switch from mi to m̂i while holding the winning

probability constant the LHS of the FOC is too low, the group will respond by increasing the effort from

which a higher winning probability results. The only complication in the proof is that one has to address the

possibility of a response by other groups which overcompensates this effect.

Proof. The first-order condition for an interior solution, evaluated at the solution, becomes after rearranging

terms:

∀i, k : vi(mi)
∂qmi(x

∗
i , . . . , x

∗
i )

∂xki
=

Q∗

(1− p∗i )
. (C.2)

We first show that

p∗i R p̂∗i ⇒ vi(mi)
∂qmi(x

∗
i , . . . , x

∗
i )

∂xki
R vi(m̂i)

∂qm̂i(x̂i, . . . , x̂i)

∂xki
(C.3)

and since the cases are exhaustive, the reverse implication is then automatically proven.

p∗i > p̂∗i : This implies that either Q∗ < Q̂∗ or qmi(x
∗
i , . . . , x

∗
i ) > qm̂i (x̂

∗
i , . . . , x̂

∗
i ). We first show that

Q∗ < Q̂∗ yields a contradiction: If p∗i > p̂∗i then there exists a group j: p∗j < p̂∗j . Together with Q∗ < Q̂∗, this

implies that

Q∗

1− p∗j
<

Q̂∗

1− p̂∗j
.

By (C.2) this is equivalent with:

vj
∂qj(x

∗
j , . . . , x

∗
j )

∂xkj
< vj

∂qj(x̂
∗
j , . . . , x̂

∗
j )

∂xkj
(C.4)

Since qj(. . .) has constant or decreasing RTS, this implies qj(x
∗
j , . . . , x

∗
j ) ≥ qj(x̂

∗
j , . . . , x̂

∗
j ). But since Q

∗ < Q̂∗,

we have p∗j > p̂∗j and thus a contradiction. From this follows that if p∗i > p̂∗i , then Q∗ ≥ Q̂∗ and

qmi(x
∗
i , . . . , x

∗
i ) > qm̂i(x̂

∗
i , . . . , x̂

∗
i ). The latter implies x̂i > x̂∗

i via the definition of x̂i. Since qi has constant or

decreasing RTS, we have:
∂qm̂i (x̂i, . . . , x̂i)

∂xki
≤
∂qm̂i(x̂

∗
i , . . . , x̂

∗
i )

∂xki
(C.5)

From p∗i > p̂∗i and Q∗ ≥ Q̂∗ follows Q∗/(1− p∗i ) > Q̂∗/(1− p̂∗i ). Using the FOCs, we have:

vi(mi)
∂qmi(xi, . . . , xi)

∂xki
> vi(m̂i)

∂qm̂i(x̂
∗
i , . . . , x̂

∗
i )

∂xki
.

Combining this equation with C.5, immediately yields the p∗i > p̂∗i part of (C.3).

The proof for p∗i < p̂∗i follows the same steps with reverse inequalities and is therefore omitted.

p∗i = p̂∗i : This implies that either Q∗ = Q̂∗ and qmi(x
∗
i , . . . , x

∗
i ) = qm̂i(x̂

∗
i , . . . , x̂

∗
i ) or Q∗ ≶ Q̂∗

qmi(x
∗
i , . . . , x

∗
i ) ≶ qm̂i (x̂

∗
i , . . . , x̂

∗
i ).

Suppose Q∗ = Q̂∗ and qmi (x
∗
i , . . . , x

∗
i ) = qm̂i (x̂

∗
i , . . . , x̂

∗
i ) hold. Then it immediately follows from the FOCs

that

vi(mi)
∂qmi(x

∗
i , . . . , x

∗
i )

∂xki
= vi(mi)

∂qm̂i(x̂
∗
i , . . . , x̂

∗
i )

∂xki
.

By definition of x̂i we then have the symmetric part of (C.1).

For the case Q∗ ≶ Q̂∗ qmi (x
∗
i , . . . , x

∗
i ) ≶ qm̂i(x̂

∗
i , . . . , x̂

∗
i ) we can show that this yields a contradiction. It

follows from these assumptions that there exists a group j with p∗j T p̂∗j such that:

qj(x
∗
j , . . . , x

∗
j ) ≷ qj(x̂

∗
j , . . . , x̂

∗
j ). (C.6)
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Furthermore,
Q∗

1− p∗j
≷ Q̂∗

1− p̂∗j
.

Applying the FOCs gives us:
∂qj(x

∗
j , . . . , x

∗
j )

∂xkj
≷ ∂qj(x̂

∗
j , . . . , x̂

∗
j )

∂xkj
.

But from this follows x∗
j < x̂∗

j and thus

qmi (x
∗
j , . . . , x

∗
j ) ≶ qm̂i(x̂

∗
j , . . . , x̂

∗
j ) (C.7)

which contradicts (C.6).

Since the cases considered are exhaustive, it follows that the implication holds in both directions.

Appendix D: Proof of Proposition 1

Proof. We employ the total differential:

∆qmi (~xi) =
∑

k

∆xki
∂q(~xi)

∂xki
(D.1)

For equal inputs we can write qmi(xi, . . . , xi) = g(xi, mi). The total differential then becomes for symmetric

efforts:

∆g(xi,mi) = mi ·∆xi
∂q(xi, . . . , xi)

∂xki
, (D.2)

and thus
∂q(xi, . . . , xi)

∂xki
=
g(xi,mi)− g(xi,mi)

mi · (xi − x′
i)

(D.3)

for xi − x′
i → 0. Similarly, we have:

∂qm̂i(xi
mi
m̂i
, . . . , xi

mi
m̂i

)

∂xki
=
g(xi

mi
m̂i
, m̂i)− g(x′

i
mi
m̂i
, m̂i)

mi · (xi − x′
i) ·

mi
m̂i

(D.4)

for xi − x′
i → 0. It follows from (D.3) and (D.4) that:

∂q(xi, . . . , xi)

∂xki
=
∂qm̂i(xi

mi
m̂i
, . . . , xi

mi
m̂i

)

∂xki
(D.5)

since by absent SSIE it holds that g(xi, mi) = g(xi
mi
m̂i
, m̂i) and g(xi,mi) = g(x′

i
mi
m̂i
, m̂i).

To apply Lemma 1, we need to know what the symmetric effort level x̂i of the group after the increase in

size would need to be in order to obtain qmi (x
∗
i , . . . , x

∗
i ) = qm̂i (x̂i, . . . , x̂i). With absent SSIE we have:

x̂i =
x∗
imi

m̂i
.

Lemma 1 then yields:

p∗i R p̂∗i ⇔ vi(mi)
∂qmi(x

∗
i , . . . , x

∗
i )

∂xki
R vi(m̂i)

∂qm̂i(
x∗imi

m̂i
, . . . ,

x∗imi

m̂i
)

∂xki

which given (D.5) reduces to the desired condition:

p∗i R p̂∗i ⇔ vi(mi) R vi(m̂i)
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Therefore, if the rent is a public good, the winning probability is independent of group size for an impact

function with absent SSIE at the equilibrium effort x∗
i for group size mi. If the rent is partly private, it is

strictly decreasing in group size.

For the welfare effects, we have:

vi(mi) = vi(m̂i): It follows from p∗i = p̂∗i and si(x
∗
i ,mi, m̂i) that x∗

i > x̂∗
i . Inserting this into π∗

i − π̂∗
i we

get: (p∗i − p̂∗i )(vi(mi))− (x∗
i − x̂∗

i ). Since the first term is equal to zero and the second term negative, we get

that πk∗i < π̂k∗i from which the statements for average and total utility follow for vi(mi) = vi(m̂i).

vi(mi) > vi(m̂i): Let vi(m̂i) → 0. Then π̂k∗i → 0. Since πk∗i > 0, and π̂k∗i is continuous in v̂i(mi) the

existence of vi(m̂i) follows.

We cannot specify vi(m̂i) more precisely under the very general assumptions. Especially, we cannot know,

whether vi(m̂i) ⋚ mivi(mi)/m̂i which is the private good case.

Appendix E: Proof of Proposition 2

Proof. We assume throughout that we are in a symmetric, interior equilibrium. By homogeneity of degree ri,

we have from Euler’s theorem

ri · qmi(xi, . . . , xi) = mi · xi ·
∂qmi(xi, . . . , xi)

∂xki
, (E.1)

and further
∂qmi(xi, . . . , xi)

∂xki
=
ri · qmi(xi, . . . , xi)

mi · xi
=
ri · qmi(1, . . . , 1)

mi · (xi)1−ri
. (E.2)

Using homogeneity of the impact function and the above expression for the partial derivative, we get for the

measure of SSIE:

si(mi, m̂i) =
qm̂i(1, . . . , 1) ·m

ri
i

qmi(1, . . . , 1) · m̂
ri
i

. (E.3)

Lemma 1 now tells us that

p∗i R p̂∗i ⇔ vi(mi)
∂qmi(x

∗
i , . . . , x

∗
i )

∂xki
R vi(m̂i)

∂qm̂i(x̂i, . . . , x̂i)

∂xki
(E.4)

where x̂i is defined such that

qmi(x
∗
i , . . . , x

∗
i ) = qmi(x̂i, . . . , x̂i).

We can make use of homogeneity of degree ri and solve for x̂i:

x̂i =
x∗
imi

m̂i

(

qmi(1, . . . , 1) · m̂
ri
i

qm̂i(1, . . . , 1) ·m
ri
i

)1/ri

=
x∗
i ·mi

si(mi, m̂i)1/ri · m̂i
(E.5)

where the last step follows from (E.3). Plugging this definition back into (E.4), we get using (E.2):

p∗i R p̂∗i ⇔ vi(mi)
ri · qmi(x

∗
i , . . . , x

∗
i )

mi · x∗
i

R vi(m̂i)
ri · qm̂i(x̂i, . . . , x̂i)si(mi, m̂i)

1/ri

mix∗
i

(E.6)

By canceling terms, this simplifies to:

p∗i R p̂∗i ⇔
vi(mi)

vi(m̂i)
R si(mi, m̂i)

1/ri (E.7)

For the welfare effects, we have:
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πAi R π̂Ai ⇔ p∗i vi(mi)− x∗
i R p̂∗i vi(m̂i)− x̂∗

i . We furthermore have:

x∗
i =

rivi(mi)

mi
p∗i (1− p∗i )

from inserting (E.2) into (A.1). Inserting this into the above equation for x∗
i and x̂

∗
i and rearranging terms yields

the result. The total welfare effects follow by multiplying with mi and m̂i on the LHS and RHS, respectively.

Appendix F: Proof of Theorem 3

A useful result will be the following:

Lemma 2. If a1 ≥ a2 > a3 or a3 > a2 ≥ a1 and f is a convex function, then

f(a1 + a2 − a3) > f(a1) + f(a2)− f(a3) (F.1)

Proof. Case a3 < a1: From convexity of f , we have for all h

f ′(a1 − a3 + h) > f ′(h) ⇔ a3 < a1 (F.2)

Integrating both sides gives:
∫ a2

a3

f ′(a1 − a3 + h)dh >

∫ a2

a3

f ′(h)dh (F.3)

which yields the desired condition:

f(a1 + a2 − a3)− f(a1) > f(a2)− f(a3). (F.4)

Case a3 > a1: From convexity of f , we have for all h

f ′(a1 − a3 + h) < f ′(h) ⇔ a3 > a1 (F.5)

Integrating both sides gives:
∫ a3

a2

f ′(a1 − a3 + h)dh >

∫ a3

a2

f ′(h)dh (F.6)

which yields the desired condition:

f(a1)− f(a1 + a2 − a3) < f(a3)− f(a2). (F.7)

The above Lemma can be used to derive the following result:

Lemma 3. Suppose ~v′′ is obtained from a sequence of θ-power mean preserving spreads of ~v. Then

θ R φ ⇔ M(~v, φ) R M(~v′′, φ) (F.8)

Proof. Suppose ~v(1), . . . ~v(n) is a sequence of vectors generated by a sequence of θ-power mean preserving

spreads. If for all i it holds that

θ R φ ⇔ M(~v(i), φ) R M(~v(i+1), φ) (F.9)
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then it clearly also holds that:

θ R φ ⇔ M(~v(1), φ) R M(~v(n), φ) (F.10)

We therefore only need to show this property for vectors which differ by a single power mean preserving spread.

Notice that for any φ:

M(~v(i), φ) R M(~v(i+1), φ) ⇔ M((v
(i)
H , v

(i)
L ), φ) R M((v

(i+1)
H , v

(i+1)
L ), φ) (F.11)

where (v
(i)
H , v

(i)
L ) refers to the vector of the two elements that are changed by the spreading operation and

(v
(i+1)
H , v

(i+1)
L ) to the vector of these two elements after application of the spreading operation. Let w.l.o.g.

v
(i)
H ≥ v

(i)
L from which immediately follows v

(i+1)
H > v

(i)
H ≥ v

(i)
L > v

(i+1)
L by the properties of the power mean

preserving spread. That is, v
(i)
H refers to the element of ~v(i) which is increased to v

(i+1)
H and v

(i)
L to the decreased

element of ~v(i).

From the power mean preserving spread also follows via evaluating (F.11) at equality:

(

1

2
(v

(i+1)
H )θ +

1

2
(v

(i+1)
L )θ

)1/θ

=

(

1

2
(v

(i)
H )θ +

1

2
(v

(i)
L )θ

)1/θ

, (F.12)

which – after solving for v
(i+1)
H – yields:

(v
(i+1)
H )θ =

(

(v
(i)
H )θ + (v

(i)
L )θ − (v

(i+1)
L )θ

)1/θ

. (F.13)

Combining this condition with (F.11) and (F.9), what is left to show is:

θ R φ ⇔
(

(v
(i)
H )φ + (v

(i)
L )φ

)1/φ

R
(

(

(v
(i)
H )θ + (v

(i)
L )θ − (v

(i+1)
L )θ

)φ/θ

+ (v
(i+1)
L )φ

)1/φ

(F.14)

which is implied by the following, more general condition:

∀ ψ > η :
(

(v
(i)
H )η + (v

(i)
L )η − (v

(i+1)
L )η

)1/η

>
(

(v
(i)
H )ψ + (v

(i)
L )ψ − (v

(i+1)
L )ψ

)1/ψ

(F.15)

Notice that standard mean inequalities or the reverse Jensen inequality from the previous appendix do not apply

to prove (F.15). This would also be counterintuitive as then the proof would not rely on v
(i)
H ≥ v

(i)
L > v

(i+1)
L .

We have to distinguish the cases ψ > 0 and ψ < 0.

ψ > 0: Define f(a) = aψ/φ, which is strictly convex and a1 = (v
(i)
H )φ, a2 = (v

(i)
L )φ, and a3 = (v

(i+1)
L )φ. If

φ > 0, we have a1 ≥ a2 > a3, while if φ < 0, we have a3 > a2 ≥ a1. In both cases Lemma 2 applies. Employing

these definitions in Lemma 2 gives:

((v
(i)
H )φ + (v

(i)
L )φ − (v

(i+1)
L )φ)ψ/φ > ((v

(i)
H )φ)ψ/φ + ((v

(i)
L )φ)ψ/φ − ((v

(i+1)
L )φ)ψ/φ, (F.16)

which simplifies to (F.15).

ψ < 0: Define f(a) = aφ/ψ, which is strictly convex and a1 = (v
(i)
H )ψ, a2 = (v

(i)
L )ψ, and a3 = (v

(i+1)
L )ψ.

Since φ < 0, we have a3 > a2 ≥ a1. Employing these definitions in Lemma 2 gives us:

((v
(i)
H )ψ + (v

(i)
L )ψ − (v

(i+1)
L )ψ)φ/ψ > ((v

(i)
H )ψ)φ/ψ + ((v

(i)
L )ψ)φ/ψ − ((v

(i+1)
L )ψ)φ/ψ (F.17)

which is equivalent with (F.15) since φ is negative and the inequality sign thus changes direction once we

exponentiate both sides with φ.

We now turn to the main proof of the theorem.
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Proof. Suppose ~v′ is more heterogeneous than ~v at mean parameter θ. Then ∃ω : ω ·~v′′ = ~v′ and ~v′′ is obtained

from a sequence of θ-power mean preserving spreads of ~v. Thus by Lemma 2,

θ R φ ⇔ M(~v, φ) R M(~v′′, φ) (F.18)

By definition of a θ-power mean preserving spread we have M(~v, θ) = M(~v′′, θ). We therefore obtain:

θ R φ ⇔
ωM(~v′′, θ)

M(~v, θ)
R ωM(~v′′, φ)

M(~v, φ)
(F.19)

Making use of the homogeneity of degree 0 of M and the definition of ω~v′′ we have:

θ R φ ⇔
M(~v′, θ)

M(~v, θ)
R M(~v′, φ)

M(~v, φ)
(F.20)

Appendix G: Proof of Theorem 4

Proof. The proof proceeds similarly to the one for single player contests Cornes and Hartley (2005), with the

main difference that first one has to obtain equilibrium conditions that fix relative efforts within each group.

The optimality condition for individual k in group i yields:

∂qi
∂xki

Q−i · v
k
i

Q2
≤ 1 (G.1)

with equality if xki > 0. Notice first that in equilibrium it can never be the case that Q−i = 0, since then some

individual will have an incentive to provide effort xki = ǫ with ǫ → 0 to win the rent with probability 1. The

expression for the partial derivative of the impact function becomes after rearranging terms:

∂qi
∂xki

=
ri ·Q

1−γ/ri
i · (xki )

γ−1

m
1−(si+ri)γ/ri
i

(G.2)

From this expression can already be derived that if one group member participates in equilibrium, all group

members do: Notice that if some group member l of group i participates in equilibrium, Qi > 0 and therefore

at xki = 0, ∂qi
∂xki

= ∞. But then the first order condition cannot hold for individual k in that equilibrium, since

we have Q > 0 and Q−i > 0 and thus the RHS of the optimality condition is infinite, which is greater than

the RHS.

Since either all group members participate or none, we can express the following relationship among efforts

within a group:

(xki )
γ−1 · vki = (xli)

γ−1 · vli ∀l, k (G.3)

Notice that this relation trivially also holds for groups that do not participate. Rearranging and summing over

all l yields:
(

1

mi

∑

(xli)
γ

)1/γ

=
xki

(vki )
1

1−γ

(

1

mi

∑

(vli)
γ

1−γ

)1/γ

(G.4)

Substituting this relation into the optimality condition yields:

Q
1− 1

ri
i ·Q−i · Vi ≤ Q2 (G.5)

where Vi = rim
si/ri
i ·

(

1
mi

∑

l(v
l
i)

γ
1−γ

)
1−γ
γ

. We now differentiate our analysis between the cases ∀i : ri < 1 and

∀i : ri = 1.
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Notice that for ∀i : ri < 1 we have that Qi = 0 can never be a best response to any positive Q−i, since

then the LHS of the above optimality condition is infinite. Therefore, if there exists a Nash equilibrium, it must

be such that all groups fully participate. We rewrite the optimality condition therefore in terms of winning

probabilities pi = Qi/Q:

Vi · (1− pi) = Q1/ri · p
1/ri−1
i (G.6)

It is now easy to see that for all Q there exists a pi(Q) such that the optimality condition is fulfilled: Notice

that for pi = 1, the LHS is strictly smaller than the RHS, while for pi = 0, the RHS is strictly smaller than the

LHS. Since both are continuous functions of pi, by the intermediate value theorem there then exists at least

one pi(Q) such that the optimality condition holds with equality. Further, this point is unique, since the LHS

is strictly decreasing in pi, while the RHS is strictly increasing in pi. This proves that there exists a unique

best response pi(Q) to any level of Q. pi(Q) corresponds to a share function of a single player contest (Cornes

& Hartley, 2005), only with the change of interpretation that it is the share of the whole group on which the

within-group equilibrium condition (G.3) has been imposed.

Naturally, the remainder of the proof proceeds similarly. pi(Q) is decreasing in Q as can be verified

from the following argument: Suppose Q increases, then the RHS is larger than the LHS of the optimality

condition. Since the RHS is strictly increasing in pi and the LHS strictly decreasing, pi must decrease in order

to maintain equality. A Nash equilibrium is now given by a Q∗ such that
∑

i pi(Q
∗) = 1. Notice that for Q = 0,

the solution to the optimality condition is pi(0) = 1, while for Q → ∞, we have that pi(∞) → 0. Therefore,
∑

i pi(0) > 1 >
∑

i pi(∞). Since
∑

i pi(Q) is strictly decreasing in Q and continuous, there must then exist

exactly one Q∗ such that the equilibrium condition is fulfilled. Thus, there exists a unique Nash equilibrium,

where all groups fully participate.

For the case of ri = 1, we instead have the simplified optimality condition:

Q−i · Vi ≤ Q2 (G.7)

We can therefore directly solve for the best response winning probability:

pi(Q) = max[0, 1−Q/Vi] (G.8)

Which has the properties pi(0) = 1 and pi(Vi) = 0. Noticing that the best response pi(Q) is weakly decreasing

in Q, we can repeat a similar argument as above to prove that there exists a unique Nash equilibrium: Without

loss of generality reorder the groups such that V1 > V2 > · · · > Vn. We have
∑

i

pi(0) = n > 1 > 0 =
∑

i

pi(V1) (G.9)

Since p1(Q) is strictly decreasing in Q for Q ∈ [0, V1] and strictly decreasing if , we have that
∑

i pi(Q) is also

strictly decreasing in Q, since it is the sum of a strictly decreasing function and weakly decreasing functions

in Q. From this then readily follows existence and uniqueness of a Q∗ such that
∑

i pi(Q
∗) = 1. Depending

on the level of this Q∗, it may very well be for some low enough Vi, that 0 ≥ 1 − Q∗/Vi, such that group i

does not participate. Define n∗ as the index of the group with the lowest Vi such that 0 > 1 − Q∗/Vi, which

completes the proof.

Appendix H: Proof of Theorem 5

Proof. The proof goes by contradiction. Suppose we have that Vi ≥ V̂i and p∗i < p̂∗i . Then it follows that

Vi · (1− p∗i ) > V̂i · (1− p̂∗i ). By (9) this is equivalent to:

(Q∗)1/ri · (p∗i )
1/ri−1 > (Q̂∗)1/ri · (p̂∗i )

1/ri−1
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and thus Q∗ > Q̂∗.

Since p∗i < p̂∗i there must exist at least one group j such that: p∗j > p̂∗j . Therefore, Vj ·(1−p
∗
j ) > Vj ·(1− p̂

∗
j ),

since Vj does not differ between both equilibria. Using (9) for group j gives us:

(Q∗)1/rj · (p∗j )
1/rj−1 < (Q̂∗)1/rj · (p̂∗j )

1/rj−1.

and thus Q∗ < Q̂∗ which yields a contradiction. By an analogous proof for Vi ≤ V̂i and p
∗
i > p̂∗i then follows

the theorem.

Appendix I: Proof of Proposition 3

Proof. From Theorem 5, we have that:

p∗i R p̂∗i ⇔ rim
si/ri
i · M(~vi,Mi(mi),

γi
1−γi

) R ri(m̂i)
si/ri ·M(~vi,Mi∪Ξi(m̂i),

γi
1−γi

). (I.1)

Rearranging terms, using the definition of si(mi, m̂i) and writing out M(~vi,Mi∪Ξi(m̂i),
γi

1−γi
) gives us:

p∗i R p̂∗i ⇔
M(~vi,Mi(mi),

γi
1−γi

)





∑mi
k=1(v

k
i (m̂i))

γi
1−γi +

∑m̂i
k=mi+1(v

k
i (m̂i))

γi
1−γi

m̂i





1−γi
γi

R si(mi, m̂i)
1/ri , (I.2)

which yields:

p∗i R p̂∗i ⇔
M(~vi,Mi(mi),

γi
1−γi

)

(

mi
m̂i

1
mi

∑

k∈Mi

(

vki (m̂i)
)

γi
1−γi + (1− mi

m̂i
) 1
(m̂i−mi)

∑

k∈Ξi

(

vki (m̂i)
)

γi
1−γi

)

1−γi
γi

R si(mi, m̂i)
1/ri (I.3)

from which follows (10), since mi = |Mi| and m̂i −mi = |Ξi| .

Appendix J: Proof of Proposition 4

Proof. a) Inserting Ri(mi, m̂i) into (10) and simplifying gives the desired result.

b) Follows directly from Theorem 3 and the assumption that ~wi,Ξi is more heterogeneous than ~wi,Mi at

γi/(1− γi). Note that we only consider cases with γi < 1 and thus γi/(1− γi) <∞.

c) It is immediately obvious that Γ(γi,mi, m̂i, Ri, si, ri) is increasing in Ri and decreasing in si. The only

difficulty is thus the proof of the behavior of Γ(γi, mi, m̂i, Ri, si, ri) with changes in γi. A useful result on

which the proof is based is the reverse Jensen inequality (for a more general version and its proof, see Bullen,

2003, p. 43):

Lemma 4. If f is convex, ̺1 > 0 and ̺i < 0 for all 2 ≥ i ≥ n and
∑n
j=1 ̺j = 1, then f(

∑n
j=1 ̺jaj) ≥

∑n
j=1 ̺jf(aj) for all

∑n
j=1 ̺jaj ∈ I, and the inequality holds strictly, if f is strictly convex and ∃i, j : ai 6= aj.

We now show that the following term is decreasing in γi:

Γ(γi,mi, m̂i, Ri, si, ri) =

(

m̂i

m̂i −mi
·

(

Ri(mi, m̂i)

si(m̂i/mi)1/ri

)

γi
1−γi

−
mi

m̂i −mi

)

1−γi
γi

. (J.1)
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Define θi =
γi

1−γi
, which is increasing in γi. What is to be shown is that the above term is decreasing in θi,

thus:
(

m̂i

m̂i −mi
Ψθi −

mi

m̂i −mi

)1/θi

>

(

m̂i

m̂i −mi
Ψφi −

mi

m̂i −mi

)1/φi

(J.2)

whenever φi > θi and where Ψ = Ri(mi,m̂i)

si(m̂i/mi)
1/ri

. Note that φi, θi ∈ (−1,∞) and therefore we will distinguish

the cases 0 < φi, and φi < 0. We will furthermore assume that θi and φi are not zero (which is equivalent to

assuming that γi 6= 0.

0 < φi: Since φi is positive, we can rewrite condition (J.2) to:

(

m̂i

m̂i −mi
Ψθi −

mi

m̂i −mi

(

1θi
)

)φi/θi

>

(

m̂i

m̂i −mi

(

Ψθi
)φi/θi

−
mi

m̂i −mi

(

1θi
)φi/θi

)

. (J.3)

Setting f(a) = aφi/θi (which is strictly convex also for negative θi) and ̺1 = m̂i
m̂i−mi

, ̺2 = − mi
m̂i−1

, and

a1 = (Ψ)θi , a2 = 1θi in the above reverse Jensen inequality directly yields equation (J.3).

φi < 0: Since θi is negative, we can rewrite condition (J.2) to:

(

m̂i

m̂i −mi
Ψφi −

mi

m̂i −mi

(

1φi

)

)θi/φi

>

(

m̂i

m̂i −mi

(

Ψφi

)θi/φi

−
mi

m̂i −mi

(

1φi

)θi/φi
)

. (J.4)

Setting f(a) = aθi/φi (which is strictly convex since the absolute value of φi is smaller than that of θi) and

̺1 = m̂i
m̂i−mi

, ̺2 = − mi
m̂i−mi

, and a1 = (Ψ)φi , a2 = 1φi in the above reverse Jensen inequality directly yields

equation (J.4). Therefore, condition (J.2) follows, which concludes the proof of part c) of the proposition.

Appendix K: Relation between comparative statics analysis and

inter-group comparisons.

Theorem 6. Consider two contests fulfilling Assumptions 1, 2, 3, and 4 for all groups, which differ only

in the group size of group i, mi and m̂i. Moreover, let mj = m̂i, qj = qi,m̂i , and vi(m̂i) = vj(mj). For all

h, k: vkh = vh and let the equilibrium winning probabilities in the symmetric equilibria be p∗i , p
∗
j and p̂∗i , p̂

∗
j

respectively. Group i participates at group size mi with effort level x∗
i .

Then:

p∗i R p∗j ⇔ p∗i R p̂∗i

The theorem shows that the comparative static interpretation of the group-size paradox and the interpre-

tation of inter-group comparisons yield the same results for equal valuations within groups.

Proof. Define first x̂ as the solution to qmi(x
∗
i , . . . , x

∗
i ) = qm̂i(x̂, . . . , x̂). By the first order conditions (A.1)

evaluated at the equilibrium effort of group i, we have for arbitrary group members k and l of groups i and j,

respectively: p∗i > p∗j iff

vi(mi)
∂qi,mi (x

∗
i , . . . , x

∗
i )

∂xki
< vj(mj)

∂qj(x̂, . . . , x̂)

∂xlj
(K.1)

since ∂qj(xj , . . . , xj)/∂x
l
j is weakly decreasing in xj . (K.1) is equivalent with:

vi(mi)
∂qi,mi(x

∗
i , . . . , x

∗
i )

∂xki
< vi(m̂i)

∂qi,m̂i(x̂, . . . , x̂)

∂xki
. (K.2)

This is by Lemma 1 equivalent with p∗i > p̂∗i . The proof for p∗i = p̂∗i and p∗i < p̂∗i is analogous.
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For the heterogeneous case, a similar statement can be made:

Theorem 7. Consider two contests fulfilling Assumptions 1, 2, 7 for all groups, which differ only by the set

of group members Mi and M̂i = Mi ∪ Ξi. Moreover, let Mj = M̂i, ri = rj, γi = γj. Let the equilibrium

winning probabilities in each equilibrium be p∗i , p
∗
j and p̂∗i , p̂

∗
j respectively. Suppose group i participates with

group members Mi. Then,

p∗i R p∗j ⇔ p∗i R p̂∗i .

To show this, note the following Lemma:

Lemma 5. Consider a contest fulfilling Assumptions 1, 2, 7 for all groups. Suppose ri = rj. Let the equilibrium

winning probabilities in equilibrium be p∗i , p
∗
j . Then,

p∗i R p∗j ⇔ Vi R Vj .

Proof. Suppose Vi > Vj , then from (9) of groups i and j and ri = rj we have:

(p∗i )
1/ri−1

(1− p∗i )
>

(p∗j )
1/ri−1

(1− p∗j )
(K.3)

Since the RHS is increasing in pi (note that 1/ri − 1 ≥ 0 by assumption) and the LHS in pj , it follows that

pi > pj . By the symmetry of the problem, for Vi < Vj it follows that pi > pj . Next suppose Vi = Vj , then by

(9) of groups i and j and ri = rj we directly have:

(p∗i )
1/ri−1

(1− p∗i )
=

(p∗j )
1/ri−1

(1− p∗j )
(K.4)

which only holds for p∗i = p∗j . Since the considered cases are exhaustive, it directly follows that: p∗i R p∗j if and

only if Vi R Vj .

From here the proof of Theorem 7 directly follows from Theorem 5 and Lemma 5 and the fact that Vj = V̂i.

Appendix L: Extensions of Propositions 2 and 3 to voluntary

contributions games.

It turns out that the key properties which have been examined for the group-size paradox in a contest setting

are also at work in collective action problems without the contest environment. In this appendix we show that

for two collective action problems without the contest environment, our methods and to some extent even the

results can be transfered.

We use the model by (Bergstrom et al., 1986) with the simplification of identical preferences across players

and the generalization of allowing vi(mi) to depend on group size.

Assumption 9. Individuals k maximize:

πki (x
k
i , ~x−xki

)) = u(w − xki , vi(mi)qmi(~xi)) (L.1)

where u is a binormal utility function increasing in both arguments.
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(We could drop the group index i here since there is only one group, but leave it for cross-referencing to

our results on group contests.) As discussed in (Bergstrom et al., 1986; Cornes & Hartley, 2007), binormality

implies that the marginal rate of substitution MRSki (x
k
i , vi(mi)qmi(~xi)) =

∂u(...)
∂vi(mi)qmi

(~xi)

∂u(...)

∂wi−xk
i

is decreasing in

vi(mi)qmi(~xi) and non-increasing in xki . Equilibrium existence has been proven by (Cornes & Hartley, 2007).

Symmetry of the equilibrium follows from Assumption 4.

We can now obtain similar results to Proposition 2:

Proposition 5. Consider two voluntary contribution games fulfilling Assumptions 9, 3, and 4, which differ only

in the group size of group i, mi and m̂i > mi. For all k: v
k
i = vi and the class of impact functions {qmi (.)}

m
mi=2

fulfills Assumption 6 with si(mi, m̂i) as the measure of SSIE. Suppose group i contributes 0 < x∗
i < wi at group

size mi and 0 < x̂∗
i < wi at group size m̂i. Then:

(di)
rivi(mi)qi(x

∗
i , . . . , x

∗
i ) R vi(m̂i)qi(x̂

∗
i , . . . , x̂

∗
i ) ⇔ 1 R si(mi, m̂i)

1/ri · drii (L.2)

where

di R 1 ⇔ 1 R vi(mi)

vi(m̂i)

1

si(mi, m̂i)

(

mi

m̂i

)ri

(L.3)

In this proposition we used the value-adjusted consumption of the public good as the criterion for the

group-size paradox. Results on group welfare are naturally even more difficult to obtain than in the contest

case, since they strongly depend on the shape of u(. . .). Since we assumed a very general form of preferences,

we also do not obtain a closed form solution for di. However, both SSIE and the rivalry in the rent still work

in the predictable manner of making the group-size paradox less and more likely, respectively.20 We also see

that the term mi/m̂i (in the expression determining the orientation of di) provides a starting advantage for

larger groups. The larger the returns to scale, the more pronounced this starting advantage is.

Proof. We will prove the result only for the case of MRS(. . . ) being strictly decreasing in the first argument.

The extension to the case where the utility function can be locally linear in the first argument is trivial, but

would require many case distinctions.21 The method of the proof is similar to the contest case. We first find

an effort level x̆i of the group with size m̂i such that the RHS of the FOC is identical to the RHS of the FOC

under the equilibrium efforts x∗
i and then compare the LHS of the FOC to determine whether x̆i R x̂∗

i .

The first order condition yields for all k:

∂q(~xi)

∂xki
vi(mi) =

(

MRS(xki , vi(mi)q(~xi))
)−1

(L.4)

Evaluated in a symmetric equilibrium, we have

∂q(x∗
i , . . . , x

∗
i )

∂xki
vi(mi) = (MRS(x∗

i , vi(mi)q(x
∗
i , . . . , x

∗
i )))

−1
. (L.5)

Define x̂i such that qmi(x
∗
i , . . . , x

∗
i ) = qm̂i(x̂i, . . . , x̂i). A simplification in comparison to the contest model is

that we do not need to consider the responses of other groups to a change in efforts after a change in group size.

Instead, we face the difficulty that the RHS of the FOC under group size mi given efforts x∗
i is not identical

20An increase in di is unanimously good for a larger group: It helps fulfilling the 1 R si(mi, m̂i)
1/ri · drii

condition and at the same time increases the critical level (di)
rivi(mi)qi(x

∗
i ) which will be surpassed if the

former condition is met.

21u being linear in wi − xki implies di = 0.
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to the RHS of the FOC under group size m̂i given efforts x̂i. To obtain an identical RHS we define x̆i such

that MRS(x∗
i , vi(mi)q(x

∗
i , . . . , x

∗
i )) = MRS(x̆i, vi(mi)q(x̆i, . . . , x̆i)). We need to determine how x̆ compares

with x̂. For this, define di such that x̆i = di
(

vi(mi)
vi(m̂i)

)1/ri
x̂i. Note that due to homogeneity of qi, we have that:

vi(mi)qmi(x
∗
i , . . . , x

∗
i ) = vi(m̂i)qm̂i

(

x̆i
di
, . . . , x̆i

di

)

.

x̆i
di

R x∗
i ⇔ MRS

(

x̆i
di
, vi(m̂i)qm̂i

(

x̆i
di
, . . . ,

x̆i
di

))

R MRS(x∗
i , qmi (x

∗
i , . . . , x

∗
i )) (L.6)

since the second argument of the two MRS is identical and the MRS is strictly decreasing in the first ar-

gument. Since MRS(x, v(m̂i)qm̂i(x, . . . , x)) is strictly decreasing in x and MRS(x∗
i , v(mi)qmi(x

∗
i , . . . , x

∗
i )) =

MRS(x̆i, v(mi)qm̂i(x̆i, . . . , x̆i)), we have that:

x̆i
di

R x∗
i ⇔ 1 R di. (L.7)

Using (E.5), which holds in virtue of Assumption 6, and our definition of di we can solve for the left condition

as:
vi(mi)

vi(m̂i)

1

si(mi, m̂i)

(

mi

m̂i

)ri

R 1 ⇔ 1 R di. (L.8)

Switching gears, we can now look at what determines whether x̆i R x̂∗
i . Since the RHS of the FOC is

strictly increasing in xi and the LHS is strictly decreasing in xi, we have that:

x̆i R x̂∗
i ⇔

∂qm̂i(x̆i, . . . , x̆i)

∂xki
vi(m̂i) R (MRS(x̆i, qmi (x̆i, . . . , x̆i)))

−1 (L.9)

Substituting the MRS(. . .) term:

x̆i R x̂∗
i ⇔

∂qm̂i(x̆i, . . . , x̆i)

∂xki
vi(m̂i) R

∂qmi(x
∗
i , . . . , x

∗
i )

∂xki
vi(mi) (L.10)

Making use of the results up to (E.7), we get via homogeneity of qmi :

x̆i R x̂∗
i ⇔

vi(mi)

vi(m̂i)
R si(mi, m̂i)

1/ri

(

x̆i
x̂i

)ri

(L.11)

Finally, cancelling terms:

dix̂i

(

vi(mi)

vi(m̂i)

)1/ri

R x̂∗
i ⇔ 1 R si(mi, m̂i)

1/ri (di)
ri (L.12)

By using (E.5) and homogeneity of qi, we can simplify the left condition:

(di)
rivi(mi)qmi (x

∗
i ) R vi(m̂i)qm̂i(x̂

∗
i ) ⇔ 1 R si(mi, m̂i)

1/ri (di)
ri (L.13)

Using a utility function u which is homogeneous in each argument, we could also obtain similar results for

the case of heterogeneous valuations. Instead, for a variant of Proposition 3 as a voluntary contributions game

we assume individuals maximize the following utility function:

Assumption 10. Individuals k maximize:

πki (x
k
i , ~x−xki

) = g(qmi(~xi))v
k
i (mi)− xki (L.14)

where g is twice continuously differentiable and ∂g(x)
∂x

> 0 and ∂2g(x)

∂x2
< 0.
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Note that this model is not covered by Assumptions 9 and 6, since g(q(~xi)) is allowed to be non-

homogeneous in efforts. However, it assumes linear costs instead. The model can be understood as a voluntary

contributions game to some intermediate impact qi, from which some final good g(. . .) with value vi(mi) is

produced. A characterization of the group-size paradox just by the properties of qi is helpful in case we have

a clear idea how the intermediate good is produced (e.g. media impact of demonstrations), but not how the

final good is produced (e.g. political influence).

Proposition 6. Consider two voluntary contribution games fulfilling Assumptions 10, 2, 7 which differ only

by the set of group members Mi and M̂i = Mi ∪ Ξi. Let the equilibrium efforts in each equilibrium be ~x∗
i ≥ 0

and ~̂x∗
i , respectively. Then:

g(qmi(~x
∗
i )) R g(qm̂i(

~̂x∗
i )) ⇔

M(~vi,Mi(mi),
γi

1−γi
)

(

mi
m̂i

·M(~vi,Mi(m̂i),
γi

1−γi
)

γi
1−γi + (1− mi

m̂i
) ·M(~vi,Ξi(m̂i),

γi
1−γi

)
γi

1−γi

)

1−γi
γi

R si(mi, m̂i)
1/ri .

(L.15)

It can easily be verified that the game has a unique Nash equilibrium. For ease of comparison, we again

keep the index i for the group even though there is just one group in this game.

Proof. The first order conditions are for all k:

(

g′(qmi(~x
∗
i ))m

si+ri−1
i riM(~xi, γ)

ri−γvki

)

= (xk∗i )1−γ (L.16)

Taking the γ mean over all xki gives us:

(

∑

k

1

mi

(

g′(qmi(~x
∗
i ))m

si+ri−1
i riM(~x∗

i , γ)
ri−γvki

)
γ

1−γ

)1/γ

= M(~x∗
i , γ) (L.17)

Cancelling terms and rearranging yields:

m
si/ri
i riM(~vi,

γ

1− γ
) = qmi(~x

∗
i )

1/ri−1 (g′(qmi(~x
∗
i ))
)−1

(L.18)

We now compare the production of the good between two groups consisting of members Mi and Mi ∪ Ξi.

Noting that the RHS of the above equation is strictly increasing in qmi(~x
∗
i ) and g(qmi(~x

∗
i )) is also strictly

increasing in qmi(~x
∗
i ), we have:

g(qmi(~x
∗
i )) R g(qm̂i(

~̂x∗
i )) ⇔ m

si/ri
i M(~vi,Mi(mi),

γ

1− γ
) R m̂

si/ri
i M(~vi,Mi∪Ξi(m̂i),

γ

1− γ
) (L.19)

Which using the definition of si(mi, m̂i) can be rewritten as:

g(qmi(~x
∗
i )) R g(qm̂i(

~̂x∗
i )) ⇔

M(~vi,Mi(mi),
γ

1−γ
)

M(~vi,Mi∪Ξi(m̂i),
γ

1−γ
)
R si(mi, m̂i)

1/ri (L.20)

Since the condition for the occurrence of the group-size paradox in this voluntary contribution game is

identical to the one from the contest, it follows that also Proposition 4 continues to hold in the voluntary

contribution game.

It should be noted that the interpretation of the RTS is not as straightforward as in the contest model,

where it represented the discriminatory power of the contest. For example, the function g may be of the form
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g(x) = xti in which case the RTS of the overall model are ri + ti instead of ri. This result must therefore be

understood as a decomposition property. If one can rewrite the production function of the collective good as a

concave function g applied to the impact produced via a CES aggregate, then equation L.15 determines whether

the group-size paradox occurs. As mentioned above, such a decomposition may be helpful in many cases where

we observe the impact of groups (e.g. media attention) but not final outcomes (e.g. political influence).
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