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Abstract

This paper starts from the observation that in public-goods group contests,

group impact can in general not be additively decomposed into some sum (of

functions) of individual efforts. We use a CES-impact function to identify the

main channels of influence of the elasticity of substitution on the behavior in

and the outcome of such a contest. We characterize the Nash equilibria of this

game and carry out comparative-static exercises with respect to the elasticity

of substitution among group members’ efforts. If groups are homogeneous

(i.e. all group members have the same valuation and efficiency within the

group), the elasticity of substitution has no effect on the equilibrium. For

heterogeneous groups, the higher the complementarity of efforts of that group,

the lower the divergence of efforts among group members and the lower the

winning probability of that group. This contradicts the common intuition that

groups can improve their performance by solving the free-rider problem via

higher degrees of complementarity of efforts.
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1 Introduction

In many economic situations like R&D races, military conflicts, lobbying, or sports,

groups compete for economic rents that are group-specific public goods. Usually, in

all these examples, efforts of different group members are to some extent complemen-

tary. In R&D races, where teams of researchers develop new technologies, the whole

project is often divided into different, more or less complementary sub-projects that

are carried out by different researchers. In military conflicts the armed forces are

highly specialized and often divided into complementary units. The same is true

for the standard lobbying case if representatives of different firms or organizations

lobbying for the same policy differ in qualifications and specialize accordingly. In

sports contests, team members are usually specialized with respect to qualifications

that complement each other in a non-additive way. Another example for a group

conflict is competition for a prize between different business partnerships. Manage-

ment consultants, lawyers, physicians, and architects often organize their companies

as partnerships where individual incomes of the partners are determined according

to their shares in the partnership (Garicano and Santos (2004)). Consultancies and

architect offices competing for projects and physicians competing for patients are

all in situations that closely resemble a contest.1 Furthermore, the substitutability

of the partners’ efforts depends on the industry as well as on the qualifications of

the different partners (and thereby the organizational structure and the business

strategy). A medical center that combines physicians with different qualifications

has a relatively high degree of complementarity between the different physicians’

qualifications. A consulting firm that specializes in only one field of business, on the

other hand, is likely to have a higher degree of substitutability between the partners’

efforts.

This list of examples could be more or less arbitrarily extended because the mere

idea of specialization implies that there is a certain degree of complementarity in

team or group production. Individuals differ in talents, qualifications, and affections

in a way that they will specialize to increase overall productivity. We can therefore

expect a certain degree of complementarity between the efforts of the group mem-

bers. Alchian and Demsetz (1972) see the non-additivity as constitutive for group or

1Competition for customers has more the character of an oligopolistic market. However, if

market demand is isoelastic, the Tullock contest is isomorphic to a Cournot oligopoly.
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team production (pp. 777): “Resource owners increase productivity through coopera-

tive specialization. [...] With team production it is difficult, solely by observing total

output, to either define or determine each individual’s contribution to this output of

the cooperating inputs. The output is yielded by a team, by definition, and it is not

a sum of separable outputs of each of its members. [...] Usual explanations of the

gains from cooperative behavior rely on exchange and production in accord with the

comparative advantage specialization principle with separable additive production.

However [...] there is a source of gain from cooperative activity involving working

as a team, wherein individual cooperating inputs do not yield identifiable, separate

products which can be summed to measure the total output.”

Despite the growing interest in the influence of heterogeneity within and be-

tween groups, with only a few exceptions the literature on group contests (surveyed

in Corchón (2007); Garfinkel and Skaperdas (2007); Konrad (2009)) has focused

attention on situations where the effort levels of group members are perfect substi-

tutes. This case is an important starting point for the analysis of group contests.

However, if complementarities are the rule rather than the exception, it is impor-

tant to understand how the degree of complementarity between individual efforts

influences behavior in and the outcome of the contest.

We use a CES production (impact) function in an n-group contest. To be more

specific, assume that individual efforts xk
i are mapped onto group impact (that enters

a lottery contest as aggregate contribution by a group)2 by means of a CES-impact

function, gi · (
∑

aki · (x
k
i )

γi)1/γi , with variable elasticity of substitution 1/(1 − γi),

ranging from perfect complements (γi → −∞) to perfect substitutes (γi → 1), and

aggregate as well as individual efficiency parameters gi, a
k
i respectively. The contest

is of the Tullock type, and the rent is a group-specific public good (i.e. nonrival and

nonexcludable in consumption).

If groups instead of individuals compete in a contest, the well-known free-rider

problem among group members exists. Every individual bears the full costs of its

investments, whereas the benefits partly spill over to the rest of the group (Katz

et al. (1990); Esteban and Ray (2001); Epstein and Mealem (2009); Nitzan and Ueda

(2009); Ryvkin (2011)). Depending on the sharing rule applied, this problem may

also exist for a private good (Nitzan (1991a,b); Esteban and Ray (2001); Nitzan and

Ueda (2009)). In the recent literature, Baik (2008), Epstein and Mealem (2009), and

2The term ‘impact function’ is defined and discussed in Wärneryd (2001); Münster (2009).
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Lee (2012) have presented contest models with group-specific public goods. A major

result in Baik (2008) is that in a model with linear effort costs and additively linear

impact functions only those group members with the highest valuation of the rent

make positive investments in the contest. In his model, efforts of group members are

perfect substitutes and therefore the optimality conditions given by the first-order

conditions cannot hold for different valuations. With several group members having

the maximal valuation among the group, there exist multiple equilibria, since the

first order condition only defines the total effort spent by the group. Epstein and

Mealem (2009) stick to the assumption of additive separability of individual effort

in the group-production functions but introduce decreasing returns to investment.

Using a technology that fulfills standard “Inada” conditions they show that every

individual makes positive investments. Their model is isomorphic to a model with

linear impact functions and in which individuals face strictly convex costs. In this

sense, effort levels are no longer perfect substitutes, but the impact function is

still additively separable. Lee (2012) focuses attention on weakest-link or perfectly

complementary impact functions. The perfect complementarity of efforts creates a

coordination problem between group members which gives rise to multiple equilibria,

and the equilibrium with highest efforts is determined by the valuation of the player

with minimum valuation within each group. Hence, the models of Baik (2008) and

Lee (2012) represent the “polar” cases with respect to the elasticity of substitution

between group members for those cases where the iso-impact curves remain convex.

Chowdhury et al. (2011) nicely complements our paper. They analyze the case of a

best-shot impact function as the most extreme case of non-convex iso-impact curves.

Our model generalizes the “convex” models by allowing for degrees of comple-

mentarity among group efforts. It turns out that the equilibrium behavior of each

group is unique for all values of γi ∈ (0, 1). For γi ∈ (−∞, 0), the complementarity

of efforts is high enough, such that the effort contributions of each member become

indispensable. Groups may therefore end up in a high effort equilibrium, in which

all members contribute, or in a low effort equilibrium, where none contribute. How-

ever, in both cases we can give analytical expressions for equilibrium strategies. In

our comparative statics analysis we therefore track equilibria with the same set of

groups which fail to coordinate on a high effort equilibrium.

A first corollary is that if there is no within-group heterogeneity with respect to

valuations of the prize vki and efficiency aki of each group member and all groups
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have the same size, the equilibrium is independent of the elasticity of substitution

except for the mentioned multiple equilibria issue. This result is a useful starting

point because it shows that the elasticity of substitution per se has no impact on

behavior in the contest, contrary to the cursory idea that increasing the degree of

complementarity between group-members’ efforts may help to internalize the exist-

ing free-rider problem.3 This point, which has been derived for public-goods games

with effort complementarity (Cornes (1993); Cornes and Hartley (2007)), carries over

to the contest environment.4 As a convenient side effect, this independence shows

that the standard results on group contests are robust with respect to variations in

the elasticity of substitution under within-group homogeneity.

The comparative-static analysis of the paper reveals that this effect is even more

pronounced in the general case: A larger degree of complementarity within a single

group reduces its winning probability. The intuition for this result is as follows. It

is true that a larger degree of complementarity brings the effort levels of the group

members closer together. Free-riding that is especially pronounced in the boundary

case γi = 1 is therefore mitigated. However, the level of effort is increasingly deter-

mined by the group member with the lowest valuation, and it is this latter effect

that turns out to be dominant. Even though the winning probability is decreasing,

the effect on the overall welfare of the group is ambiguous: Highly efficient group

members with a low valuation may start to provide effort under higher degrees of

complementarity and due to their efficiency raise the overall welfare of the group.

The results highlight the importance of accounting for within-group heterogeneity

and complementarity for a proper analysis of the provision of group-specific public

goods in a contest environment.

While these results are derived for the public good “winning probability in a

contest”, it may be interesting to see whether they hold in general for the private

3E.g. Hirshleifer (1983) argues for the special case of perfect complements (“weakest-link” tech-

nology) that the complementarity between group members’ efforts helps solving the free-rider

problem.

4Cornes and Hartley (2007) have analyzed a voluntary-contributions to a public-good game

with CES production (social-composition) functions where a single group jointly produces a public

good. The additional dimension of generality from the contest structure comes at the cost of a more

restrictive class of utility functions. Whereas Cornes and Hartley (2007) need binormal utility

functions, we assume that utility functions are additively separable between the group-specific

public good and some numéraire good that finances individual contributions.
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provision of public goods. So far it has not been possible to analyze this point in

public goods models such as Cornes and Hartley (2007), since there exist no an-

alytical solutions for the equilibrium contributions aside from some special cases.

The fact that in our model we can explicitly solve for equilibrium strategies en-

ables us to perform this comparative-static analysis with respect to the degree of

complementarity in efforts.

The paper is organized as follows. We introduce the model in Section 2 and start

with introductory examples in Section 3. We characterize the simultaneous Nash

equilibria of the general model in Section 4. In section 5 the comparative-static

results are summarized. Section 6 concludes. Large proofs are given in the appendix,

and in a special Appendix C we will state convergence results for ~γ approaching 1,

0, and −∞.

2 The model

Assume that n ≥ 2 groups compete for a given rent. The set of groups is given by

N = {1, 2, . . . , n} while mi is the number of individuals in group i and k is the

index of a generic member of this group. The rent is a group-specific public good

that has a value vki > 0 to individual k of group i. pi represents the probability of

group i = 1, ..., n to win the contest. It is a function of some vector of aggregate

group output q1, ..., qn. We focus on Tullock-form contest-success functions where

the winning probability of a group i is defined as:

Assumption 1: pi(Q1, ..., Qn) =

{

Qi
∑n

j=1 Qj
, ∃Qj > 0

1
n
, Qj = 0 ∀ j

, i = 1, ..., n

The aggregate group output Qi depends on individual effort xk
i , Qi = qi(x

1
i , ..., x

mi

i ),

i = 1, ..., n. Following the literature we will call qi(.) impact functions in the following

and make the assumption that they are of the constant elasticity of substitution

(CES) type.

Assumption 2: qi(x
1
i , ..., x

mi

i ) = gi ·
(
∑mi

l=1 a
l
i · (x

l
i)

γi
)1/γi , γi ∈

{(−∞, 0), (0, 1)}, i = 1, ...n.

The function has the usual parameters aki for the efficiency of an individual’s effort

and gi for the relative strength of the group. Note that we obtain a closed-form
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solution only if for all i it holds that γi 6= 0. The Cobb-Douglas case γi → 0 will

be covered by a limit result in Appendix C. Also, if γi < 0 and ∃k : xk
i = 0, the

function is not well defined. We will therefore take the limit of qi(. . . ) as xk
i → 0,

which means qi(. . . ) = 0 in that case. Note that for γi > 0 this is not the case.

Assumption 3: Individuals are risk neutral, face linear costs, and max-

imize their net rent.

It follows from Assumptions 1, 2, and 3 that the individual expected utility functions

are as follows:

πk
i (x

1
1, ..., x

mn
n ) := πk

i (x
k
i , ~x/xk

i
) = vki ·

gi ·
(
∑

l a
l
i ·
(

xl
i

)γi)1/γi

∑

j gj ·
(
∑

l a
l
j ·
(

xl
j

)γj)1/γj
− xk

i , (1)

where ~x/xk
i
refers to the vector x1

1, ..., x
mn
n without xk

i . We are looking for a Nash

equilibrium of this game where individuals choose their effort xk
i simultaneously to

maximize their expected utility,

xk∗
i ∈ argmax

xk
i

πk
i

(

xk
i , ~x

∗
/xk

i

)

∀i, k, (2)

where “∗” refers to equilibrium values.

3 Introductory examples

In this section we analyze two simple special cases that provide intuition for the

relevance of the degree of complementarity in contests. As we will see, the degree

of complementarity is only relevant if the valuations between members of the same

group differ. The examples restrict attention to a contest between two groups, 1 and

2, with m1 and m2 members whose valuations can take two values. The valuation of

the group members are either high vi or low vi, thus vi ≥ vi, i = 1, 2. The examples

are chosen to highlight the central mechanisms of this model, we therefore relegate

all technical details about the existence of interior solutions, active and inactive

groups and group members, etc. to the next section.

Example 1: Let us restrict attention to groups of equal size m1 = m2 = m with

only a single valuation of the members of a given group, vi = vi = vi, i = 1, 2 and

identical technologies with aki = 1, gi = 1 and γi = γ. In this case

x∗
1(v1, v2, m) =

(v1)
2 · v2

m · (v1 + v2)2
, x∗

2(v1, v2, m) =
v1 · (v2)

2

m · (v1 + v2)2

6



constitutes an interior equilibrium. Investments in the contest are independent of γi.

This example shows that the elasticity of substitution does not play a role if there is

no within-group heterogeneity and groups are of equal size and have the same impact

function. The reason for this result is the combination of a constant-return to scale

impact function with a contest success function that is homogeneous of degree zero.

Conversely, it must be either within-group heterogeneity and/or differences in group

size and technology that may cause behavioral changes due to changes in γi. The

next example shows that this may in fact be the case.

Example 2: Let us assume again m1 = m2 = m and for all i and k that aki = 1 and

γi = γ. However, we allow for heterogeneous valuations within groups: v1 = v2 =

v ≤ v = v1 = v2. The population of each group is divided into m = m = m/2 of

individuals with the high and the low valuation, respectively. One gets the following

symmetric equilibrium:

x∗(v, v,m, γ) =
v

2 ·m ·
(

(v/v)
γ

1−γ + 1
) ,

x∗(v, v,m, γ) =
v

2 ·m ·
(

(v/v)
γ

1−γ + 1
) . (3)

where x∗ and x∗ are the respective equilibrium efforts of the individuals with the

high and low valuation. As expected, γ may influence the outcome of the game if

differences among the valuations of the rent among the group members exist.

4 The general case

We now turn to the analysis of the general case. In order to have a lean notation, let

Xi =
∑

k x
k
i , y

k
i = (xk

i )
γi , and Yi = (

∑

l a
l
i · y

l
i). Further, Q =

∑

j Qj =
∑

j gj ·Y
1
γj

j =

gi ·Y
1
γi

i +
∑

j 6=i gjY
1
γj

j = Qi+Q/i in the following. Also, let ~γ denote the vector of all

γi. While deriving the equilibrium strategies, we will omit the parameters of these

functions for better readability (e.g yki instead of yki (γi, x
k
i )).

Hillman and Riley (1987) and Stein (2002) have shown that individuals may

prefer to stay inactive in a single player contest. Baik (2008) has shown for γi = 1

that only group members with maximum valuation participate in a contest. Hence,

it is possible that some individuals and/or groups will stay inactive in our setup.

We therefore start with an analysis of active individuals and groups.
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Definition 1: An individual k of group i is said to participate if xk
i > 0. A group

i is said to participate if there exists some k such that xk
i > 0. A group is said to

fully participate if ∀k : xk
i > 0.

Lemma 1: a) In a Nash equilibrium of a contest fulfilling Assumptions 1, 2, and 3

if a group participates, it fully participates.

b) If γi < 0, mi > 1, and one group member of group i does not participate, it is

always a best response for all group members to not participate.

The proof of this as well as the next Lemma can be found in the appendix.

Lemma 1 a) implies that in order to determine whether an individual participates,

it is sufficient to determine whether its group participates. Lemma 1 b) shows that

irrespective of the behavior of the other groups, it may occur that a group does

not participate. The reason is that for γi < 0, a positive contribution from each

member is indispensable: As soon as some group member k chooses xk
i = 0, we have

qi(. . . ) = 0. This of course gives rise to multiple equilibria as a group i may either

coordinate on not participating or fully participating if γi < 0. In the following,

we will therefore use the notation that there are n ≤ n groups with γi < 0 and

mi > 1 and we will denote their set as N , which may be empty. For each of the

equilibria determined we must specify a subset of N of groups that coordinate on

not participating, which will be denoted N0.

Let Vi(γi) ≡ gi·
(

∑

l a
l
i · (a

l
i · v

l
i)

γi
1−γi

)

1−γi
γi . Without loss of generality, suppose that

all groups are ordered with descending Vi such that Vi(γi) ≥ Vi+1(γi+1). Q
∗
i (~γ,N0)

and Q∗(~γ,N0) shall denote Qi and Q in an equilibrium where N0 do not participate.

We use | . . . | to denote the cardinality of a set of groups. The following Lemma

determines the groups that participate in the equilibrium in which N0 do not par-

ticipate.

Lemma 2: a) The best response conditions of the members of a group i ∈ N/N0

can be fulfilled, if and only if the following group best response function is fulfilled:

Q̂i(~γ,Q/i) = max
(

0,
√

Q/i · Vi(γi)−Q/i

)

. (4)

where Q/i > 0 must hold.

b) Groups N∗(~γ,N0) = {i ∈ N/N0 : i ≤ n∗(~γ,N0)} participate, where n∗(~γ,N0) ≡

argmaxi∈N/N0
i such that Vi(γi) > Q∗(~γ,N0).

c) Holding N0 fixed, if the resulting Nash equilibrium is unique, Q∗
i (~γ,N0) and

Q∗(~γ,N0) are continuous functions in ~γ.
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Lemma 2 a) gives the necessary and sufficient condition for existence of best

response strategies of those groups that do not belong to N0, for which it is auto-

matically fulfilled. If (4) is not fulfilled, there will be at least one individual who

does not play best responses if the group reaches impact Qi 6= Q̂i(. . . ).

Lemma 2 b) characterizes the participating groups given that the groups in N0 do

not participate. There are therefore two reasons why a group might not participate:

Either because the average valuation of the group members are too low or because

it belongs to N0. However, once N0 is fixed, one can uniquely identify the remaining

groups which do not participate.

Lemma 2 c) is useful for the comparative-static analysis if one focuses on a specific

equilibrium with given N0. Given that the number and identity of active groups then

still depends on ~γ, it is a priori not clear that aggregate effort and indirect utilities

are continuous in ~γ. The Lemma reveals that continuity is in fact guaranteed if

the identity of groups in N0 remains the same. The economic intuition is as follows:

Excluding groups among N0, assume that γ̂j is a point where a formerly active group

becomes inactive or a formerly inactive group becomes active. The aggregate group

effort of the active group is continuously reduced to zero as γj approaches γ̂j, and

the formerly inactive group continuously increases its effort from 0 as γj increases

from γ̂j. Hence, there is a “smooth” fade out or fade in of groups at those points.

The following proposition characterizes the set of Nash equilibria of the game.

For readability, the strategies xk
i are defined as functions of Q∗(~γ) and Vi(γi).

Proposition 1. The set of Nash equilibria of the game characterized by Assumptions

1,2, and 3 is given as follows. For each set of groups in N0 such that |N/N0| ≥ 2

there exists a Nash equilibrium given by strategies xk
i
∗
(~γ,N0) that fulfill

xk
i

∗
(~γ,N0) =











Q∗(~γ,N0) ·
(

1−
Q∗(~γ,N0)

Vi(γi)

)

· (gi)
γi

1−γi ·
(aki ·v

k
i )

1
1−γi

Vi(γi)
1

1−γi

, i ∈ N∗(~γ,N0)

0, else

,

(5)

where Q∗(~γ,N0) =
|N∗(~γ,N0)|−1

∑

i∈N∗(~γ,N0)
Vi(γi)−1 and N∗(~γ,N0) is defined in Lemma 2 a).

Proof. Suppose N0 do not participate. From Lemma 1 b) we then know that the

members of these groups play best responses. Lemma 2 b) determines the partici-
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pating groups. To obtain Q∗(~γ,N0) we sum (4) over all i ∈ N∗(~γ,N0):

Q∗(~γ,N0) =
|N∗(~γ,N0)| − 1

∑

i∈N∗(~γ,N0)
Vi(γi)−1

. (6)

With an explicit solution for Q∗(~γ,N0), we can now determine individual expendi-

tures xk
i
∗
(~γ,N0) by solving equation (4) using (6). The participation condition of a

group is given by Lemma 2, while Lemma 1 a) ensures that there does not exist an

incentive for any group member to deviate to xk
i = 0 in the participating groups.

It was further shown that the first-order conditions return local maxima. Since the

system of equations given by the first-order conditions of the participating groups

has a unique solution this is indeed the unique Nash equilibrium given N0. Notice

if N/N0 has cardinality 1, we have Q/i = 0 in (4) and thus best responses are no

longer well defined for the participating group. There may be therefore some N0 for

which no equilibrium exists. However, there is always at least one Nash equilibrium

for N0 = ∅.

Several things are noteworthy: Given the set N0, the equilibrium is unique if

it exists. Therefore, the maximum number of equilibria is the number of possible

combinations of N0 such that in total either no groups or at least two groups partici-

pate. However, it is possible that some of these equilibria are identical since removing

group i from N0 does not necessarily mean that it enters N∗.

Further, it may be a Nash equilibrium that no group participates if for all i we

have γi < 0 and mi > 1. It also may occur that for some N0 no Nash equilibrium

exists, since for (5) to be well defined it is required that at least two groups partici-

pate. An N0 that leaves only one potentially participating group will therefore not

yield a Nash equilibrium.

A focal special case has no intra-group heterogeneity vki = vi∀k∀i and aki =

ai∀k∀i. The following corollary of Proposition 1 can then be established.

Corollary 1: Let N0 = ∅. Suppose for all groups i and all individuals k, it holds that

aki = ai and vki = vi and further for all other groups j it holds that ai ·mi = aj ·mj.

Then the equilibrium efforts are independent of ~γ.

Proof. Inserting the above values for every individual l ali = ai and vli = vi and

setting for all other groups j aj ·mj = ai ·mi into (5) directly yields the result.
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The corollary shows that ~γ is only relevant if there is either heterogeneity with

respect to valuations within groups and/or heterogeneity with respect to group size.

In all other cases equilibrium behavior does not depend on ~γ with the exception that

groups may fall into the set N0 if their γi drops below 0. The corollary shows that

corresponding results from public-goods games with complementarities in efforts

(Cornes (1993); Cornes and Hartley (2007)) continue to hold in a contest envi-

ronment. This finding implies that an increase in complementarity between group

members’ effort per se has no effect on the within-group free-rider problem, as could

have been conjectured from Hirshleifer (1983). A further implication of the corollary

is that the results on group contests that have been derived in the literature for the

case of perfect substitutes or perfect complements carry over to arbitrary elasticities

of substitution if homogeneous groups differ only in their valuations of the rent and

their group efficiency parameter gi.

5 Comparative statics

Before we move on to the comparative-static analysis, let us first note that the

winning probability of group i takes the form:

pi(Q
∗
1(~γ), ..., Q

∗
n(~γ)) =

Qi
∗(~γ)

Q∗(~γ)
=

(

1−
Q∗(~γ)

Vi(γi)

)

, (7)

which can be derived from (4). An analysis of convergence results for γi which can be

found in Appendix C suggests that it makes sense to generally impose
∑

k a
k
i = 1 to

model relative differences in efficiency between group members and use the param-

eter gi for the resulting absolute differences in efficiency between groups. Only then

the comparative statics with respect to ~γ will capture solely the effect of different

degrees of substitution and no productivity effects.

We now turn to the comparative-static analysis of the influence of the elastic-

ity of substitution on the behavior in the contest using the approach developed by

Cornes and Hartley (2005). Since we have multiple equilibria for γi < 0, it is nec-

essary to exclude jumps from one equilibrium to another. We will therefore focus

in the following on the equilibrium given by some N0 in which at least two groups

participate.

Most interestingly, individual valuations in relation to the valuations of the other

group members define the individuals’ share of the amount of effort spent by the

11



group, xk
i
∗
/X∗

i . The valuation of other groups have no effect on these shares. As

was to be expected, a larger elasticity of substitution γi increases ceteris paribus

the dispersion of these shares, since in equilibrium the exponent discriminates more

strongly between differences in (efficiency-weighted) valuations. The next proposi-

tion states the effect of γi on the individual shares.

Proposition 2. Suppose group i participates. The share of an individual of its

group’s effort,
xk
i

Xi
, increases (decreases) strictly in the elasticity of substitution among

efforts if the valuation times the efficiency aki · v
k
i of the individual is strictly larger

(smaller) than the share-weighted geometric mean of the group members’ valuation

times efficiency,
∏

l (a
l
i · v

l
i)

(

xli
Xi

)

.

Proof. It is straightforward to derive the following equation from (5):

xk
i
∗
(~γ)

X∗
i (~γ)

=
(aki · v

k
i )

1
1−γi

∑

l (a
l
i · v

l
i)

1
1−γi

(8)

Taking the derivative of (8) with respect to γi yields

∂
xk
i

Xi

∂γi
=

(aki · v
k
i )

1
1−γi

∑

l (a
l
i · v

l
i)

1
1−γi

1

(1− γi)2

(

ln(aki · v
k
i )−

∑

l (a
l
i · v

l
i)

1
1−γi ln(ali · v

l
i)

∑

l (a
l
i · v

l
i)

1
1−γi

)

. (9)

The RHS of the above equation is positive whenever the term in brackets is positive.

Setting ln(aki · v
k
i ) ≥

∑

l (a
l
i · v

l
i)

1
1−γi ln(ali · v

l
i)/
∑

l (a
l
i · v

l
i)

1
1−γi and rearranging yields

the condition:

∂
xk
i

Xi

∂γi
T 0 ⇔ aki · v

k
i T

∏

l

(ali · v
l
i)





(ali·v
l
i)

1
1−γi

∑
s (as

i
·vs

i
)

1
1−γi





. (10)

The proposition implies that for all group members with a valuation above the

weighted geometric mean, the share of total group effort increases with γi. The result

shows that the dispersion of valuations plays a crucial role for the comparative-static

effects of γi. In the easiest case of a two-member group i with individuals j and k, the

proposition boils down conveniently: Individual j’s share increases in γi if and only if

ajvj > akvk: The individual with the higher efficiency-weighted valuation increases

its relative contributions if γi goes up. In the context of the partnership example

from the introduction, the finding implies that the relative burden for group success
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is increasingly carried by the individuals with either the highest stakes and/or the

highest productivity if it becomes easier to substitute between the partners’ efforts.

The reason is as follows. A higher elasticity of substitution has two effects. From

the point of view of the high-stake / high productivity player, effort becomes less

dependent on the other players’ efforts, which ceteris paribus gives an additional

stimulus to invest relatively more. And from the point of view of his fellow team

mates, the negative effects of slacking off become less detrimental, which ceteris

paribus implies that it pays to invest relatively less.

A second interesting question may be whether the winning probability of groups

can be increased by a higher degree of complementarity of efforts. The intuition be-

hind this may be twofold: First, with higher complementarity, the free-rider problem

is solved better, such that also individuals with low valuations participate. Second,

there often exist gains from specialization. While the latter intuition is induced by

the technology itself, which is exogenous in our model, the first intuition can be

examined through comparative statics of the model.

Proposition 3. Suppose
∑

k a
k
i = 1. Then the winning probability of a participating

group i is weakly increasing in γi and strictly increasing whenever there exist two

group members k and l such that aki · v
k
i 6= ali · v

l
i and the change in γi does not turn

any group from a participative into a non-participative status.

Proof. Using (6), the winning probability of group i, (7), can be written as

Qi
∗(~γ,N0)

Q∗(~γ,N0)
=

(

1−
n∗(~γ)− 1

1 +
∑

j 6=i
Vi(γi)
Vj(γj)

)

, (11)

where the sum refers to all active groups 1, ..., n∗(~γ) except i. Two cases have to

be distinguished: (a) A change in γi turns group i from a participative to a non-

participative status or leaves its non-participative status intact. In this case, the

change in γi has no influence on group i’s winning probability because of the smooth

fade out of the group’s investments. (b) A change in γi has no influence on the

participative status of i. In this case, note that (11) is strictly increasing in Vi(γi).

Vi(γi) has under the assumption of
∑

k a
k
i = 1 the structure of an aki weighted power

mean of the aki · vki values of the group members. By the weighted power mean

inequality (Bullen (2003)) we know that Vi(γi) is strictly increasing in ~γ whenever

there exist two individuals with aki · v
k
i 6= ali · v

l
i. Whenever all individuals have the

same aki · v
k
i , Vi(γi) = gi · a

k
i · v

k
i and is therefore independent of γi.
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This result contradicts the common intuition that higher complementarity leads

to a better solution of the free-rider problem and thus a better performance of the

group. The result shows exactly the opposite: All things equal, heterogeneous groups

with higher complementarity perform worse than similar groups with low comple-

mentarity. The intuition behind this is that a lower γi puts more emphasis on the

lower values of xk
i , so the lower γi, the more the equilibrium will reflect the optimal

qi of lower valuation group members. This has an important implication for the

provision of public goods by groups in general: Highly complementary technologies

will only be used if there are sufficient gains of specialization coming with them.

While higher complementarity solves the free-rider problem, it solves it in the worst

possible way: By reducing the incentives of high valuation individuals more than

increasing the incentives of low valuation individuals.

For the partnership example from the introduction, Proposition 3 implies that if

the production of impact of a partnership becomes more complementary, the equi-

librium share or winning probability for this partnership goes down. If as a thought

experiment one defines the sum of prizes of the partners in a partnership as total

profit, the distribution of these profits depends on the shares of the partners in the

firm, and can therefore be considered a design element. If in addition one consid-

ers the degree of complementarity also as a design element (because it depends at

least to a certain extend on the organizational structure and the business model

of the partnership), Proposition 3 reveals a rather odd implication for the share-

or winning-probability maximizing design: The partnership would try to minimize

complementarities. If it is possible to reach perfect substitutability, it would allocate

all the profit shares to the single, most productive and / or highest-stake individual

(Olson (1965) and Ray et al. (2007)). This conclusions runs counter to the intuition

that complementarity in efforts encourages division of labor. Our finding isolates the

pure effect of complementarity and shows that this pure effect alone is not only in-

sufficient but counterproductive to explain gains from the division of labor. It is true

that the division of labor comes with specialization, which makes individual efforts

complementary. But the gains from specialization must result from an increase in

group productivity, and this increase must be sufficiently strong to overcompensate

the negative effect resulting from an increase in complementarity. If groups cannot

use incentive mechanisms to internalize the within-group externalities, a free-rider

problem exists for all degrees of complementarity and the effects are the more severe
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the higher the complementarity.

Our result is also novel in the literature on public-goods games in which no gen-

eral comparative-static results have been provided for the effect of complementarity

in efforts on the provision of public goods for heterogeneous contributors. The fact

that we can solve for equilibrium strategies analytically allows us to perform this

analysis here. This may also motivate a reexamination of the public-goods games

in Cornes (1993) and Cornes and Hartley (2007) outside a contest setting to verify

whether this result carries over to other public-goods games. Since it is not gener-

ally possible to solve for equilibrium strategies analytically in these models, one can

expect this to be a nontrivial task, however.

Given that the winning probability of group i is monotonically increasing in γi,

we may be interested in whether the same is true for the expected payoff. It turns

out that the effect on the expected payoff of the group members is ambiguous both

for the aggregate of players as well as the individual players. Inserting (5) into (2)

we obtain:

πk
i = pi

(

vki −Q∗(~γ,N0)(gi)
γi

1−γi
(aki · v

k
i )

1
1−γi

Vi(γi)
1

1−γi

)

. (12)

As we know from Proposition 3, pi is increasing in γi. However, also Q∗(~γ,N0) is

increasing in γi and for sufficiently high aki v
k
i the term (gi)

γi
1−γi ·

(aki ·v
k
i )

1
1−γi

Vi(γi)
1

1−γi

may be

increasing as well. Therefore, for the group members with the highest aki ·v
k
i , expected

utility may be decreasing in γi. It is also clear that the group members of the lowest

aki · vki will always improve their expected payoff by lower complementarity, since

they will strictly reduce their effort and the group has a higher winning probability.

The optimal γi a utilitarian planner who maximizes the sum of the group members’

expected payoffs would impose is ambiguous: A lower γi may induce individuals with

a lower valuation vki but higher efficiency aki to exert higher effort. If the highest type

has a high valuation but a low efficiency, this may lead to overall efficiency gains for

the group. From a group-production perspective one can understand the underlying

mechanism in the following way: By changing the incentives of the group members,

different degrees of complementarity also change the shares of effort provided by

them. In turn, under heterogeneous technologies, this also changes the shares of

total effort used by the different technologies. Different γi will therefore not only

influence the effort Xi provided by the group, but also the average efficiency of the

group in converting this effort into impact. To get a better intuition for this result
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we turn to an example.

Example 4: Since we are only interested in the effects of higher complementarity

for one group, let the aggregate of the valuations of the first group be V1(γ1) = 10.

Since this is the only way in which parameters from the first group enter the decision

problem of the second, no more information about group one would be necessary.

One could for example think of a group of a single individual with v11 = 10, ak1 = 1,

and g1 = 1. For the second group, assume two individuals with efficiency parameters

a12 = 0.2 and a22 = 0.8. Thus,
∑

l a
l
2 = 1 and comparative statics over γ2 contain no

effects from changes in productivity. Further, let valuations be heterogeneous such

that v12 = 30 and v22 = 5. Finally, the efficiency parameter of the group is g2 = 1.

From the fact that v12 · a
1
2 = 6 > 4 = v22 · a

2
2, we know that for γ2 = 1 only the

first individual will participate and for γ2 → −∞, both individuals will participate.

Proposition 3 tells us that the winning probability will decrease with lower values

of γ2.
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Figure 1: Effort levels and winning probability for different values of γ2.

From Figure 1 we can see how this translates into our example. The effort level

of individual 2 (with high efficiency and low valuation, dashed line) slowly increases

as we reduce γ2, while the effort of individual 1 (solid line) falls. Both converge as

γ2 → −∞. We also see that the winning probability is falling with lower values of γ2,

as expected. The free-rider problem is thus solved with lower γ2, but in a way such

that the overall winning probability of the group is decreased. The more interesting

result is, however, how this translates into the expected utility of the individuals.

In Figure 2 we see the expected utility of individuals 1 and 2 (again, represented

by solid and dashed lines) and the aggregate expected utility (dotdashed line). The
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Figure 2: Expected utility for different values of γ2.

expected utility of individual 2 is of course rising in γ2 (falling with higher comple-

mentarity), since in the case of perfect substitutes, i.e. γ2 = 1, individual 2 can fully

free ride. The change of expected utility of individual 1 is ambiguous with respect

to changes in γ2. For very high values of γ2, it is also increasing with γ2, while for

low values it is decreasing in γ2. Aggregate expected utility is mainly influenced by

individual 1 and thus total expected utility of the group members behaves similarly:

It is also maximal for very high degrees of complementarity and has a minimum

below γ2 = 1. The result is driven by the fact that the efficiency of individual 2 is

much higher than that of individual 1 and at the same time the valuation of indi-

vidual 1 is much higher than that of individual 2. In the perfect-substitutes case

γ2 = 1, only the less efficient individual 1 contributes effort and individual 2 takes

a free ride. As we move away from this case, individual 2’s incentives to provide ef-

fort increase only slowly. Due to the complementarity, individual 1 incurs very high

losses in these cases. Reducing γ2 even further provides much stronger incentives for

individual 2. Individual 1 can thus reduce its effort further and in turn gain utility

from the higher complementarity.

6 Concluding Remarks

This paper has started from the observation that group effort can in general not

be additively decomposed into some sum (of functions) of individual efforts. The

use of a CES-impact function has allowed to identify the main channels of influence
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of the elasticity of substitution on the behavior in and the outcome of contests.

If groups have are homogeneous (i.e. all group members have the same valuation

and efficiency within the group), the elasticity of substitution does not matter. For

heterogeneous groups, the higher the complementarity of efforts of that group, the

lower the divergence of efforts among group members and the lower the winning

probability of that group. This contradicts the common intuition that groups can

improve their performance by solving the free-rider problem via higher degrees of

complementarity of efforts. Only if very high valuation members are also very ineffi-

cient at effort production the total expected utility may be higher for higher degrees

of complementarity: At high levels of complementarity, highly efficient individuals

with low valuations may replace some of the effort that is provided by less efficient

group members at low levels of complementarity. The beneficial or detrimental role of

complementarity for a group is therefore undetermined without further information

on the composition of a group.

Appendix A: Proof of Lemma 1

Proof. For the proof of Lemma a) we first check that the interior solution is a

local maximum if all group members participate. The first-order condition of the

maximization problem (2) can be written as

Q/i

Q2
Y

1
γi

−1

i =
(yki )

1
γi

−1

vki
. (A.1)

The second-order condition is satisfied if

vki ·Q/i · Y
1
γi

−2

i

γi ·Q2

(

1− 2 · Qi

Q

γi
− 1

)

−
1
γi
− 1

γi
· (yki )

1
γi

−2
< 0. (A.2)

Solving the first-order condition for vki and inserting the expression into the second-

order condition we obtain, upon rearranging:

1− 1
γi

γi

(

1−
yki
Yi

)

− 2 ·
1

γ2
i

·
Qi · y

k
i

Q · Yi
< 0, (A.3)

which holds for all γi ∈ {(−∞, 0), (0, 1)}. Therefore, all solutions of the first-order

condition are local maxima taking the other players’ strategies as given. The best

responses are either given by the solution to the first-order condition, or by a corner
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solution. From equation (1) it is clear that the only possible corner solutions are non-

participation with xk
i = 0. We thus need to verify that whenever the best response

of one member of the group is given by the solution to the first-order condition, it

is not possible for any member of the group to have the best response xk
i = 0.

First, we will show that whenever there exists a solution of the first-order condi-

tion for one individual of a group, it exists for all individuals: From the first-order

conditions of two representative group members l, k we obtain the within-group

equilibrium condition:

∀l, k :
(yki )

1
γi

−1

vki
=

(yli)
1
γi

−1

vli
(A.4)

for all members k, l of group i. Both, the left-hand side (LHS) and right-hand side

(RHS) of (A.4) are strictly increasing in yki , y
l
i if ~γ ∈ (0, 1). For ~γ ∈ (−∞, 0) both

LHS and RHS of (A.4) are strictly decreasing in yki , y
l
i. Thus, for each yki there

exists a yli such that the within-group equilibrium condition holds. Since for all

group members the LHS of (A.1) is equal, there exists a positive solution to the

first-order condition (FOC) for either all group members or none.

Second, we need to show that xk
i = 0 is not a best response if it is a best response

for another individual l in the group to play xl
i > 0. We do so by contradiction:

Obviously, for a corner solution with xk
i = 0 and xl

i > 0 the following condition

needs to hold:

∂πk
i

∂xk
i

=
Q/i

Q2
· Y

1
γi

−1

i ·(xk
i )

γi−1
· vki − 1

∣

∣

∣

xk
i = 0, xl

i > 0
≤ 0. (A.5)

From the fact that there is an individual l in the group, which participates with

strictly positive effort, we know that

∂πl
i

∂xl
i

=
Q/i

Q2
· Y

1
γi

−1

i ·(xl
i)

γi−1
· vli − 1

∣

∣

∣

xk
i = 0, xl

i > 0
= 0. (A.6)

Inserting (A.6) into (A.5) yields:

(xl
i)
1−γi

vli
−

(xk
i )

1−γi

vki

∣

∣

∣

xk
i = 0, xl

i > 0
≤ 0 (A.7)

from which we obtain by inserting xk
i = 0:

(xl
i)

1−γi

∣

∣

∣

xl
i > 0

≤ 0 (A.8)

which is a contradiction for all γi < 1. Thus there does not exist an equilibrium

in which for one player in the group a corner solution at zero effort investments is

obtained while for another an interior solution holds.
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Part b) can be shown as follows: Suppose xk
i = 0 for some k, mi ≥ 2 and γi < 0.

Then qi(x
1
i , . . . , x

mi

i ) = 0. The expected payoff πl
i(x

1
i , . . . , x

mi
n ) of any other group

member is then strictly decreasing in its own effort xl
i independent of Q/i. Therefore,

xk
i = 0, xl

i = 0 are mutually best responses for all group members, independent of

the behavior of other groups reflected in Q/i.

Appendix B: Proof of Lemma 2

Proof. Suppose i 6∈ N0. If there exists a solution to the FOC, it is characterized by

the following equation, obtained by solving (A.4) for yli and summing over all l,

Yi = yki ·
∑

l

(
vli
vki

)
γi

1−γi . (B.1)

We can now solve equation (A.1) for Yi explicitly:

Yi =
(
√

Q/i · Vi(γi)−Q/i

)γi

. (B.2)

Thus, the condition for a strictly interior solution is (
∑

l v
l
i

γi
1−γi )

1−γi
γi > Q/i. Note

that this condition is the same for all members of a group. In all other cases, we get

yki = 0 for γi ∈ (0, 1) and yki = ∞ for γi ∈ (−∞, 0) as was to be expected and which

corresponds to xk
i = 0. In these cases we have ∀l : yki = yli by equation (A.4) and

by the definition of Qi, we have: Qi = Y
1
γi

i = 0. We can write a group best-response

function as

Q̂i(γi, Q/i) = max
(

0,
√

Q/i · Vi(γi)−Q/i

)

. (B.3)

establishing part a), since by Lemma 1 either for all group members we obtain an

interior solution or for none. Since the best-response function is continuous in γi 6= 0

and in the strategies of the other groups Q/i, if a unique Nash equilibrium exists,

the equilibrium strategies must also be continuous in all γi. This establishes part c)

of Lemma 2. What remains to be shown is which groups participate in equilibrium

given that N0 do not participate. Suppose a group ζ participates in equilibrium with

strictly positive effort, while a group ζ+1 does not participate. Let Q∗
i (~γ,N0) be Qi

in equilibrium (the notation ignores here that these are best responses and should

thus be functions of Q∗
/i) and let the other variables introduced above be defined
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correspondingly in equilibrium. Then by the above condition in equilibrium we have

for any given ~γ:

Vζ(γi) > Q∗
/ζ(~γ,N0)

Vζ+1(γi) ≤ Q∗
/ζ+1(~γ,N0) (B.4)

Since by assumption Q∗
ζ+1(~γ,N0) = 0, we have Q∗

/ζ+1(~γ,N0) = Q∗(~γ,N0). Solving

(4) for Q/i tells us that in an equilibrium where group ζ participates, the following

needs to be true:

Q∗
/ζ(~γ,N0) =

Q∗(~γ,N0)
2

Vζ(γi)
. (B.5)

We now insert (B.5) into the first equation of (B.4) and the condition Q̂/ζ+1 = Q̂

into the second equation. Thus, the condition (B.4) becomes

Vζ(γζ) > Q∗(~γ,N0)

Vζ+1(γζ+1) ≤ Q∗(~γ,N0) (B.6)

in equilibrium. It follows that Vζ(γζ) > Vζ+1(γζ+1). We can thus order the groups

such that Vi(γi) ≥ Vi+1(γi+1) and define n∗(~γ,N0) as the group with the highest

index number in N/N0 that still participates with strictly positive effort. By (B.6),

all groups with i ∈ N/N0 and i ≤ n∗(~γ) participate. This establishes part b) of

Lemma 2.

Appendix C: Convergence Results

We will now state convergence results where for all groups j, γj approaches 1, 0,

and −∞. X∗
i denotes Xi in equilibrium. Throughout we will assume N0 = ∅.

Proposition 4. For γi → 1−, we get
xk
i

∗

X∗

i
= 0 if ∃aliv

l
i > aki v

k
i and 1

♯{l:ali·v
l
i=aki ·v

k
i }

otherwise.

Proof. It is straightforward to derive the following equation from (5):

xk
i
∗
(~γ)

X∗
i (~γ)

=
(aki · v

k
i )

1
1−γi

∑

l (a
l
i · v

l
i)

1
1−γi

(C.1)
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For the limit it then holds:

lim
γi→1

(aki · v
k
i )

1
1−γi

∑

l (a
l
i · v

l
i)

1
1−γi

= lim
γi→1

(

∑

l

(

ali · v
l
i

aki · v
k
i

)

1
1−γi

)−1

=







0, ∃ali · v
l
i > aki · v

k
i

1
♯{ali·v

l
i:a

l
i·v

l
i=aki ·v

k
i }
, else

. (C.2)

Proposition 4 shows that for γi increasing towards one, the group members with

lower valuations will decrease their efforts towards zero, and only the group members

with the highest valuations contribute. If there is more than one individual with the

highest valuation, we converge to an equilibrium where those individuals contribute

equally. In this case we get multiple equilibria if γi = 1 with the property that the

sum of contributions is always identical (Baik (2008)). In this sense, our convergence

result can be interpreted as an equilibrium-selection mechanism which selects the

equal-contributions equilibrium from the multiple equilibria in Baik (2008).

Next we will analyze the other boundary case when all γj approach −∞. In

order to have a lean notation we denote γj = γ and limγ→−∞ f(γ) by f(−∞) for all

functions f(.):

Proposition 5. For γ → −∞, we obtain:

a) limγ→−∞ Vi(γ) =
gi
mi
HM(v1i , . . . , v

mi

i )

b) limγ→−∞
xk
i

∗
(γ)

X∗

i (γ)
= 1

mi

c) limγ→−∞Q∗(γ) = n∗(−∞)
∑

j

∑

l 1/(v
l
j ·gi)

d) xk
i
∗
is independent of alj ∀j, l

where HM(v1i , . . . , v
mi

i ) = mi
∑

l
1

vl
i

is the harmonic mean of the valuations within the

group.

The results follow directly from the determination of the limit of (5).

Since relative strength of groups is determined by Vi, the limit behavior of Vi

is of course of great interest. From Proposition 5 b) we see that the distribution

and level of relative strengths aki of each group member have no effect on Vi. The

irrelevance of aki is further shown by part d) of the proposition, where we see that

even equilibrium efforts xk
i
∗
are unaffected by aki . This was to be expected, since

under perfect complements in fact all inputs are crucial for the level of qi. Proposition
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5 b) shows that (as expected given the results by Lee (2012)) all group members

participate with equal amounts. In this sense, for γ near −∞, we obtain similar

results as for a min(. . . ) impact function. However, this function creates multiple

equilibria with an associated equilibrium-selection problem. Given the uniqueness

of equilibria for all finite ~γ, our limit result can be interpreted as an equilibrium-

selection mechanism where individual contributions depend on the harmonic mean

of the valuations.

Next we look at the limit behavior for γ → 0. It turns out that we have to consider

γ → 0+ and γ → 0− separately because the problem may not be continuous at this

point.

Proposition 6. At γi = 0, Vi(γi) is discontinuous if
∑

l a
l
i 6= 1.

lim
γi→0+

Vi =



















∞,
∑

aki > 1
∏

(aki · v
k
i )

aki ,
∑

aki = 1

0,
∑

aki < 1

, (C.3)

lim
γi→0−

Vi =



















0,
∑

aki > 1
∏

(aki · v
k
i )

aki ,
∑

aki = 1

∞,
∑

aki < 1

. (C.4)

Since the winning probability, the equilibrium efforts, and impacts are all func-

tions of all Vi, it follows that these values will in general also be discontinuous in

γi. In particular, the winning probability and the participation condition of group i

are increasing functions of Vi. For γ → 0+ the group with the strictly highest
∑

aki

will therefore win with probability one while for γ → 0− the group with the strictly

lowest
∑

aki will win with probability one. Only if all groups have
∑

aki = 1, these

effects do not occur and we obtain for Vi the a
k
i -weighted geometric mean of vki · a

k
i .

To obtain a proper intuition for the behavior near γ = 0, it is helpful to show an

example.

Example 3: Assume that v1 = v2 but allow for differences in group size with

mi > 1. Further, we fix aki = 1, gi = gj = 1, and γi = γ. Therefore, we are always in
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a situation with
∑

aki = mi > 1. In this case, (5) implies

x1(m1, m2, γ, v) =
v ·m

1−2γ
γ

1 ·m
1−γ
γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 , x2(m1, m2, γ, v) =
v ·m

1−γ
γ

1 ·m
1−2γ

γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 ,

(C.5)

in a within-group symmetric equilibrium. In this case, individual efforts depend on

the size of the groups. Coming back to Example 2, (C.5) can be used to determine

that the values of the impact functions are

q1(m1, m2, γ, v) = v ·
m

1−γ
γ

1 ·m
1−γ
γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 , q2(m1, m2, γ, v) = v ·
m

1−γ
γ

1 ·m
1−γ
γ

2
(

m
1−γ
γ

1 +m
1−γ
γ

2

)2 ,

which in turn can be used to determine the equilibrium winning probabilities:

p1(m1, m2, γ) =
m

γ−1
γ

2

m
γ−1
γ

1 +m
γ−1
γ

2

, p2(m1, m2, γ) =
m

γ−1
γ

1

m
γ−1
γ

1 +m
γ−1
γ

2

. (C.6)

The limit behavior of these probabilities is

lim
γ→0−

p1(m1, m2, γ) =

{

1, m1 < m2

0, m1 > m2

,

lim
γ→0+

p1(m1, m2, γ) =

{

0, m1 < m2

1, m1 > m2

,

and analogously for p2(m1, m2, γ). Figure 3 shows p1(m1, m2, γ) (dashed line) and

p2(m1, m2, γ) (solid line) for the case m1 > m2. We will focus on p1(m1, m2, γ) in

the following. The graph starts at 0.5 at γ = 1. This is the well-known case where

group size has no impact on the winning probability (Baik (2008)). p1(m1, m2, γ)

steadily rises to 1 as γ converges to 0. At this point it jumps to 0 and increases to 0.5

again as γ converges to −∞. In this case, group-size again does not matter because

only the minimum contribution counts (Lee (2012)). As evident from the left panel

of Figure 4, for the smaller group the efforts are larger over the whole range of γ.

Therefore, the changes in the winning probability at γ = 0 are due to a changing

productivity of the larger and the smaller group with γ. This is evident from the

right panel of Figure 4, where the impact of group 2 is consistently higher than the

one of group 1 for γ < 0 and vice versa for γ > 0. The driving force behind these

results is thus the CES function which for
∑

aki 6= 1 changes not only the degree of
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Figure 3: Equilibrium probabilities for different values of γ (m1 = 11, m2 = 10).
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Figure 4: Effort levels (left) and impacts (right) for different values of γ.

complementarity with γ but also the efficiency as becomes apparent when inserting

xk
i = xi and γi = γ into the impact function:

qi(xi, ..., xi) = gi · xi ·

(

mi
∑

k=1

aki

)1/γ

. (C.7)

Whenever
∑

aki > 1, the function becomes infinitely large for γ → 0+ and infinitely

small for γ → 0−. The rate of convergence depends on the sum of all aki , which was

smaller for group 2 in the above case. Therefore it had a disadvantage for positive

γ and an advantage for negative γ.

25



References

Alchian, A. A., Demsetz, H., 1972. Information costs, and economic organization.

The American Economic Review 62 (5), 777–795.

Baik, K. H., 2008. Contests with group-specific public goods prizes. Social Choice

and Welfare 30 (1), 103–117.

Bullen, P., 2003. Handbook of Means and their Inequalities. Kluwer, Dordrecht.

Chowdhury, S. M., Lee, D., Sheremeta, R. M., 2011. Top guns may not

fire: Best-shot group contests with group-specific public good prizes, uni-

versity of East Anglia AEP Discussion Papers in Economics. Available at

http://ideas.repec.org/p/uea/aepppr/2011 24.html.

Corchón, L. C., 2007. The theory of contests: A survey. Review of Economic Design

11 (2), 69–100.

Cornes, R., 1993. Dyke maintenance and other stories: Some neglected types of

public goods. The Quarterly Journal of Economics 108, 259–71.

Cornes, R., Hartley, R., 2005. Asymmetric contests with general technologies. Eco-

nomic Theory 26 (4), 923–946.

Cornes, R., Hartley, R., 2007. Weak links, good shots and other public good games:

Building on BBV. Journal of Public Economics 91 (9), 1684–1707.

Epstein, G. S., Mealem, Y., 2009. Group specific public goods, orchestration of

interest groups with free riding. Public Choice 139 (3), 357–369.

Esteban, J., Ray, D., 2001. Collective action and the group paradox. American Po-

litical Science Review 95 (3), 663–672.

Garfinkel, M. R., Skaperdas, S., 2007. Economics of conflict: An overview. In: Hart-

ley, K., Sandler, T. (Eds.), Handbook of defense economics, 1st Edition. Vol. 2.

Elsevier, Ch. 22, pp. 649–709.

Garicano, L., Santos, T., 2004. Referrals. The American Economic Review 94 (3),

499–525.

26



Hillman, A. L., Riley, J. G., 1987. Politically contestable rents and transfers. Eco-

nomics and Politics 1 (1), 17–39.

Hirshleifer, J., 1983. From weakest-link to best-shot: The voluntary provision of

public goods. Public Choice 41 (3), 371–386.

Katz, E., Nitzan, S., Rosenberg, J., 1990. Rent-seeking for pure public goods. Public

Choice 65 (1), 49–60.

Konrad, K., 2009. Strategy and Dynamics in Contests. Oxford University Press,

Oxford, UK.

Lee, D., 2012. Weakest-link contests with group-specific public good prizes. Euro-

pean Journal of Political Economy 28, 238–248.

Münster, J., 2009. Group contest success functions. Economic Theory 41 (2), 345–

357.

Nitzan, S., 1991a. Collective rent dissipation. The Economic Journal 101 (409),

1522–1534.

Nitzan, S., 1991b. Rent-seeking with non-identical sharing rules. Public Choice

71 (1), 43–50.

Nitzan, S., Ueda, K., 2009. Collective contests for commons and club goods. Journal

of Public Economics 93 (1), 48–55.

Olson, M., 1965. The Logic of Collective Action. Harvard University Press, Cam-

bridge, MA.

Ray, D., Baland, J.-M., Dagnelie, O., 2007. Inequality and inefficiency in joint

projects. The Economic Journal 117, 922–935.

Ryvkin, D., 2011. The optimal sorting of players in contests between groups. Games

and Economic Behavior 73 (2), 564 – 572.

Stein, W. E., 2002. Asymmetric rent-seeking with more than two contestants. Public

Choice 113 (3), 325–336.

Wärneryd, K., 2001. Replicating contests. Economics Letters 71 (3), 323 – 327.

27


